Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T00:17:46.317Z Has data issue: false hasContentIssue false

Overview of Monitoring of Cerebral Blood Flow and Metabolism after Severe Head Injury

Published online by Cambridge University Press:  12 November 2018

J. Paul Muizelaar*
Affiliation:
Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia
Marc L. Schröder
Affiliation:
Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia
*
Reprint request to: J. Paul Muizelaar, M.D. Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Box 631, MCV Station, Richmond, VA U.S.A. 23298-0631.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The relationships between cerebral blood flow (CBF), cerebral metabolism (cerebral metabolic rate of oxygen, CMRO2) and cerebral oxygen extraction (arteriovenous difference of oxygen, AVDO2) are discussed, using the formula CMRO2 = CBF × AVDO2. Metabolic autoregulation, pressure autoregulation and viscosity autoregulation can all be explained by the strong tendency of the brain to keep AVDO2 constant. Monitoring of CBF, CMRO2 or AVDO2 very early after injury is impractical, but the available data indicate that cerebral ischemia plays a considerable role at this stage. It can best be avoided by not "treating" arterial hypertension and not using too much hyperventilation, while generous use of mannitol is probably beneficial. Once in the ICU, treatment can most practically be guided by monitoring of jugular bulb venous oxygen saturation. If saturation drops below 50%, the reason for this must be found (high intracranial pressure, blood pressure not high enough, too vigorous hyperventilation, arterial hypoxia, anemia) and must be treated accordingly.

Résumé

Résumé

Nous discutons des relations entre le flot sanguin cérébral (FSC), le métabolisme cérébral (taux métabolique cérébral d'oxygène, TMCO2) et le taux d'extraction de l'oxygène (différence artérioveineuse en oxygène, DAVO2), et nous utilisons la formule TMCO2 = FSC × DAVO2. L'autorégulation métabolique peut être entièrement expliquée par la tendance marquée du cerveau à garder la DAVO2 constante. La surveillance du FSC, du TMCO2 ou de la DAVO2 très tôt après le traumatisme est impraticable. Cependant, les données disponibles indiquent que l'ischémie cérébrale joue un rôle considérable pendant cette période. La meilleure façon de l'éviter est de ne pas "traiter" l'hypertension artérielle et de ne pas trop utiliser l'hyperventilation, alors que l'utilisation généreuse du mannitol est probablement bénéfique. A l'unité de soins intensifs, le traitement peut être guidé de façon pratique par la surveillance de la saturation veineuse en oxygène au niveau du golfe de la jugulaire. Si la saturation s'abaisse au dessous de 50%, on doit en trouver la cause (pression intracranienne elevee, pression sanguine trop basse, hyperventilation trop vigoureuse, hypoxie artérielle, anémie) et on doit y remédier.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 1994

References

1. Kety, SS, Schmidt, CF. Effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 1948; 27: 484492.Google Scholar
2. McHenry, LC, West, JW, Cooper, ES, Goldberg, HI, Jaffe, ME. Cerebral autoregulation in man. Stroke 1974; 5: 695706.CrossRefGoogle Scholar
3. Muizelaar, JP, Wei, EP, Kontos, HA, Becker, DP. Cerebral blood flow is regulated by changes in blood pressure and in blood viscosity alike. Stroke 1986; 17:4448.Google Scholar
4. Kontos, HA, Raper, AJ, Patterson, JL. Analysis of local pH, pC02, and bicarbonate in pial vessels. Stroke 1977; 8: 358360.Google Scholar
5. Kontos, HA, Wei, EP, Navari, RM, et al. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol 1978; 234-H371-H383.Google Scholar
6. Muizelaar, JP, Marmarou, A, DeSalles, AAF, et al. Cerebral blood flow and metabolism in severely head-injured children. Part I: Relation with, GCS, outcome, ICP and PVI. J Neurosurg 1989; 71:6371.Google Scholar
7. Adams, JH, Graham, DI. The pathology of blunt head injury. In: Critchley, M, O'Leary, JL, Jennett, B, eds., Scientific Foundations of Neurology, London: W. Heinemann, 1972; 488491.Google Scholar
8. Jones, TH, Morawetz, RB, Crowell, RM, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 1981; 54: 773782.Google Scholar
9. Kasoff, SS, Zingesser, LH, Shulman, K. Compartmental abnormalities of regional cerebral blood flow in children with head trauma. J Neurosurg 1972; 36: 463470.Google Scholar
10. Bruce, DA, Langfitt, TW, Miller, JD, et al. Regional cerebral blood flow, intracranial pressure and brain metabolism in comatose patients. J Neurosurg 1973; 38: 131144.Google Scholar
11. Fieschi, C, Battistini, N, Beduschi, A, Boselli, L, Rossanda, M. Regional cerebral blood flow and intraventricular pressure in acute head injuries. J Neurol Neurosurg Psychiatry 1974; 37: 13781388.Google Scholar
12. Overgaard, J, Tweed, WA. Cerebral circulation after head injury. Part I: CBF and its regulation after closed head injury with emphasis on clinical correlations. J Neurosurg 1974; 41: 531541.Google Scholar
13. Enevoldsen, EM, Cold, GE, Jensen, FT, Malmros, R. Dynamic changes in regional cerebral blood flow, intraventricular pressure, cerebrospinal fluid pH and lactate levels during the acute phase of head injury. J Neurosurg 1976; 44: 191214.Google Scholar
14. Enevoldsen, EM, Jensen, FT. Compartmental analysis of regional cerebral blood flow in patients with severe head injuries. J Neurosurg 1977; 47: 699712.CrossRefGoogle Scholar
15. Obrist, WD, Gennarelli, TA, Segawa, H, Dolinskas, CA, Langfitt, TW. Relation of cerebral blood flow to neurological status and outcome in head-injured patients. J Neurosurg 1979; 51: 292300.CrossRefGoogle Scholar
16. Overgaard, J, Mosdal, C, Tweed, WA. Cerebral circulation after head injury. Part 3: Does reduced regional CBF determine recovery of brain function after blunt head injury? J Neurosurg 1981; 55: 6374.Google Scholar
17. Obrist, WD, Langfitt, TW, Jaggi, JL, Cruz, J, Gennarelli, TA. Cerebral blood flow and metabolism in comatose patients with acute head injury. J Neurosurg 1984; 61: 241253.CrossRefGoogle Scholar
18. Muizelaar, JP, Becker, DP, Lutz, HA, Newlon, PG. Cerebral ischemia after severe head injury: its role in determining clinical status and its possible treatment. In: Villani, R, ed. Advances in Neurotraumatology. Amsterdam: Excerpta Medica 1984; 9298.Google Scholar
19. Bouma, GJ, Muizelaar, JP, Choi, SC, Newlon, PG, Young HE Cerebral blood flow and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg 1991; 75(5): 685693.Google Scholar
20. Teasdale, GM, Jennett, B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974; 2: 8184.Google Scholar
21. Bouma, GJ, Muizelaar, JP, Stringer, WA, et al. Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using stable xenon-enhanced computerized tomography. J Neurosurg 1992; 77: 360368.Google Scholar
22. Schroder, ML, Muizelaar, JP, Kuta, AJ. Reversal of global ischemia after removal of an acute subdural hematoma documented with cerebral blood flow and cerebral blood volume measurement. J Neurosurg 1994; 80: 324327.CrossRefGoogle Scholar
23. Cruz, J: Brain ischemia in head injury. J Neurosurg 1994; 78: 522523. (Letter)Google Scholar
24. Muizelaar, JR, Brain ischemia in head injury. J Neurosurg 1994; 78: 521. (Letter)Google Scholar
25. Becker, DR, Miller, JD, Ward, JD, et al. The outcome from severe head injury with early diagnosis and intensive management. J Neurosurg 1977; 47: 491502.Google Scholar
26. Seelig, JM, Greenberg, RP, Becker, DP. Traumatic acute subdural hematoma; major mortality reduction in comatose patients treated in under four hours. N Engl J Med 1981; 304: 15111518.Google Scholar
27. Marion, DW, Bouma, GJ. The use of stable xenon-enhanced computed tomography studies of cerebral blood flow to define changes in cerebral carbon dioxide vasoresponsitivity caused by severe head injury. Neurosurgery 1991; 29(6): 869873.Google Scholar
28. Muizelaar, JR, Marmarou, A, Ward, JD, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg 1991; 75: 731739.Google Scholar
29. Obrist, WD, Clifton, GL, Robertson, CS, Langfitt, TW. Cerebral metabolic changes induced by hyperventilation in acute head injury. In: Meyer, JS, ed. Cerebral Vascular Disease 6. Amsterdam: Elsevier, 1987: 251255.Google Scholar
30. Marion, W, Obrist, WD, Carlier, PM, Penrod, LE, Darby, JM. The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J Neurosurg 1994; 79: 354362.Google Scholar
31. Marshall, WJS, Jackson, JLF, Langfitt, TW. Brain swelling caused by trauma and arterial hypertension. Arch Neurol 1969; 21: 545553.CrossRefGoogle Scholar
32. Simard, JM, Bellefleur, M. Systemic arterial hypertension in head trauma. Am J Cardiol 1989; 63: 32C-35C.Google Scholar
33. Robertson, CS, Clifton, GL, Taylor, AP, Grossman, RG. Treatment of hypertension associated with head injury. J Neurosurg 1983; 59: 455461.CrossRefGoogle Scholar
34. Muizelaar, JP, Lutz, HA, Becker, DP. Effect of mannitol on ICP and CBF and correlation with pressure autoregulation in severely head injured patients. J Neurosurg 1984; 61: 700706.Google Scholar
35. Bouma, GJ, Muizelaar, JP, Bandoh, K, Marmarou, A. Blood pressure and intracranial pressure-volume dynamics in severe head injury: relationship with cerebral blood flow. J Neurosurg 1992; 77: 1519.Google Scholar
36. Muizelaar, JP, Becker, DP. Induced hypertension for the treatment of cerebral ischemia after subarachnoid hemorrhage. Direct effect on CBF. Surg Neurol 1986; 25: 317325.Google Scholar
37. Muizelaar, JP. Induced arterial hypertension in the treatment of high ICP. In: Hoff, JT, Betz, AL, eds. Intracranial Pressure VII. Heidelberg: Springer-Verlag, 1989; 508509.Google Scholar
38. Burke, AM, Quest, DO, Chien, S, et al. The effects of mannitol on blood viscosity. J Neurosurg 1981; 55: 550553.Google Scholar
39. Bruce, DA, Schutz, H, Vapalahti, M, Langfitt, TW. Pitfalls in the interpretation of xenon CBF studies in head-injured patients. In: Langfitt, TW, McHenry, LC, Reivich, M, Wollman, H, eds. Cerebral Circulation and Metabolism. Berlin/Heidelberg/New York: Springer Verlag, 1975; 406408.Google Scholar
40. Muizelaar, JR, Wei, ER Kontos, HA, Becker, DP. Mannitol causes compensatory vasoconstriction and vasodilation in response to blood viscosity changes. J Neurosurg 1983; 59: 822828.Google Scholar
41. Muizelaar, JR, Marmarou, A, Young, HF, et al. Improving the outcome of severe head injury with the oxygen free radical scavenger PEG-SOD. A phase II trial. J Neurosurg 1992; 78: 375382.Google Scholar
42. Carter, LP, Erspamer, R, Bro, WJ. Cortical blood flow: thermal diffusion vs. isotope clearance. Stroke 1981; 12:513518.Google Scholar
43. Dickman, CA, Carter, LP, Baldwin, MZ, Harrington, TR, Tallman, D. Continuous blood flow monitoring and intracranial pressure monitoring in acute craniocerebral trauma. Neurosurgery 1991; 28:467472.Google Scholar
44. Schroder, ML, Muizelaar, JP. Monitoring of regional cerebral blood flow (CBF) in acute head injury by thermal diffusion. Acta Neurochir (Wien) 1994 (Suppl); 59: 4749.Google Scholar
45. Lindegaard, KF, Nornes, H, Bakke, SJ, et al. Cerebral vasospasm diagnosis by means of angiography and blood velocity measurements. Acta Neurochir 1989; 100: 1224.Google Scholar
46. Martin, NA, Doberstein, C, Zane, C, et al. Posttraumatic cerebral arterial spasm: transcranial Doppler ultrasound, cerebral blood flow, and angiographic findings. J Neurosurg 1992; 77: 575583.Google Scholar
47. Cruz, J. Continuous versus serial global cerebral hemometabolic monitoring: applications in acute brain trauma. Acta Neurochir Suppl 42: 3539, 1988.Google Scholar
48. Cruz, J, Miner, ME, Allen, SJ, et al. Continuous monitoring of cerebral oxygenation in acute brain injury: assessment of cerebral hemodynamic reserve. Neurosurgery 1991; 29: 743749.CrossRefGoogle Scholar
49. Sheinberg, M, Kanter, MJ, Robertson, CS, et al. Continuous monitoring of jugular venous oxygen saturation in head-injured patients. J Neurosurg 1992; 76: 212217.Google Scholar
50. Robertson, CS, Narayan, RK, Gokaslan, ZL, et al. Cerebral arterial oxygen difference as an estimate of cerebral blood flow in comatose patients. J Neurosurg 1989; 70: 222230.Google Scholar
51. Gopinath, SP, Robertson, CS, Contant, CF, et al. Jugular venous desaturation and outcome after head injury. J Neurol Neurosurg Psychiatry. (In press)Google Scholar
52. Stocchetti, N, Paparella, A, Bridelli F: Cerebral venous oxygen saturation studied with bilateral samples in the internal jugular veins. Neurosurgery 1994; 34: 3844.Google Scholar
53. Cruz, J, Miner, ME, Allen, SJ, et al. Continuous monitoring of cerebral oxygenation in acute brain injury: injection of mannitol during hyperventilation. J Neurosurg 1990; 73: 725730.Google Scholar
54. Rosner, MJ, Daughton, S. Cerebral perfusion pressure management in head injury. J Trauma 1990; 30: 933941.Google Scholar
55. Trumble, ER, Muizelaar, JP, Myseros, JS, et al. Coagulopathy and morbidity with the use of hetastarch in the treatment of aneurysmal vasospasm. J. Neurosurg. (In press)Google Scholar