Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-16T02:08:15.810Z Has data issue: false hasContentIssue false

Responses to Dynamic Head-and-Body Tilts are Enhanced in Parkinson's Disease

Published online by Cambridge University Press:  18 September 2015

Nicole Paquet*
Affiliation:
School of Physical and Occupational Therapy and Physiology Department, Faculty of Medicine, McGill University, Montreal.
Christina W.Y. Hui-Chan
Affiliation:
School of Physical and Occupational Therapy and Physiology Department, Faculty of Medicine, McGill University, Montreal. Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong.
*
Aerospace Medical Research Unit, McGill University, 3655 Drummond, Room 1220, Montreal, Quebec, Canada H3G 1Y6
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Previous studies demonstrated that destabilizing responses to slow perturbations were enhanced in patients with Parkinson's disease (PD). Our objectives were to investigate the influence of PD on responses to faster whole head-and-body tilts in the standing position, and to establish whether any modification of tilt-evoked responses in PD patients was related to possible changes in the modulation of soleus (SO) H-reflex.

Methods:

Ten PD patients and 10 age-matched normal subjects assumed a standing position on an L-shaped tilting apparatus. Their head and shoulders were firmly attached to the back support of the apparatus, while their feet were fixated to the standing platform. With their vision occluded, the subject's whole head-and-body was suddenly tilted forward to 20°, at a peak head acceleration of 0.7g ± 0.lg. Tilt-evoked responses were recorded from the lower limb muscles bilaterally. In addition, 40 H-reflexes were elicited in the SO muscle at 30-190 ms intervals after the onset of head acceleration. The M response amplitude was kept within ±15% of its control value.

Results:

PD patients demonstrated an abnormally high responsiveness to whole head-and-body tilts in comparison with age-matched normal subjects. This was shown by the significantly larger proportion of PD patients manifesting responses in the SO, biceps femoris and vastus lateralis muscles (p<0.05), as well as their significantly larger SO response area (413%; p<0.01). In contrast, the amplitude of the SO H-reflex was significantly increased by only 14% (p<0.05) in these patients, and only at 30-70 ms after head acceleration onset.

Conclusion:

The overexcitable tilt-evoked responses of PD patients could originate from a reduced ability to suppress responses when the body is supported. This enhanced excitability of tilt-evoked responses was probably not due to motoneuronal hyperexcitability or decreased presynaptic inhibition of the group la terminals involved in the mainly monosynaptic H-reflex pathway. Thus, we hypothesize that the control of spinal interneurons involved in the tilt-evoked responses may be defective in PD.

Résumé:

RÉSUMÉ:But:

Des études antérieures ont démontré que les réponses déstabilisatrices à des perturbations lentes étaient augmentées chez les patients atteints de la maladie de Parkinson (MP). Nos objectifs étaient d'étudier l'influence de la MP sur les réponses à des basules plus rapides de l'ensemble tête-corps, et d'établir si des modifications des réponses à la bascule étaient reliées à des changements possibles de la modulation du réflexe-H du muscle soleaire (SO).

Méthode:

Dix patients atteints de la MP et 10 sujets normaux appariés pour l'âge étaient placés debout sur une structure basculante en forme de “L”. Leur tête et leurs épaules étaient fermement attachées au support dorsal de la structure, et leurs pieds à la plate-forme de support. L'ensemble tête-corps était soudainement basculé vers l'avant de 20°, en l'absence de vision, à un pic moyen d'accélération de la tête de 0.7g ± 0.lg. Les réponses à la bascule étaient enregistrées au niveau des muscles des jambes des deux côtés. De plus, 40 réflexes-H ont été élicités dans le muscle SO à intervalles 30 de 190 ms après le début de l'accélération de la tête. L'amplitude de la réponse M était gardée a ±15% de la valeur contrôle.

Résultats:

Les patients atteints de la MP ont démontré une réactivité anormalement élévée aux bascules en comparaison avec les sujets âgés normaux. Une proportion significativement plus grande de patients atteints de la MP ont manifesté des réponses à la bascule dans les muscles SO, biceps fémoral et vaste externe (p<0.05), et l'aire de la réponse dans leur muscle SO était significativement plus grande (413%; p<0.01). Au contraire, l'amplitude du réflexe-H des patients atteints de la MP n'était significativement augmentée que de 14% (p<0.05), et seulement entre 30 et 70 ms après le début de l'accélération de la tête.

Conclusions:

L'hyperexcitabilité des réponses à la bascule des patients atteints de la MP pourrait provenir d'une capacité réduite à atténuer les réponses lorsque le corps est supporté. Cette excitabilité augmentee ne semblait pas due à une hyperexcitabilité des motoneurones ou une diminution de l'inhibition présynaptique des terminaisons du groupe la impliquées dans la voie principalement monosynaptique du réflèxe-H. Ainsi, nous posons l'hypothèse que le contrôle des interneurones spinaux impliqués dans les réponses à la bascule puisse être défectueux dans la MP.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1997

References

REFERENCES

1. Weiner, WJ. Parkinson’s Disease. In: Weiner, VJ, Goetz, CG, eds. Neurology for the Non-Neurologist, second edition. Philadelphia: JB Lippincott, 1989: 109117.Google Scholar
2. Jankovic, J, McDermott, M, Carter, J, et al. Variable expression of Parkinson’s Disease: a base-line analysis of the DATATOP cohort. Neurology 1990; 40: 15291534.Google Scholar
3. Waterston, JA, Hawken, MB, Tanyeri, S, Jantti, P, Kennard, C. Influence of sensory manipulation on postural control in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1993; 56: 12761281.Google Scholar
4. Horak, FB, Nutt, JG, Nashner, LM. Postural inflexibility in parkinsonian subjects. J Neurol Sci 1992; 111: 4658.Google Scholar
5. Schieppati, M, Hugon, M, Grasso, M, Nardone, A, Galante, M. The limits of equilibrium in young and elderly normal subjects and in parkinsonians. Electroencephal Clin Neurophysiol 1994; 93: 286298.Google Scholar
6. Beckley, DJ, Bloem, BR, van Dijk, JG, Roos, RAC, Remler, MP. Electrophysiological correlates of postural instability in Parkinson’s disease. Electroencephal Clin Neurophysiol 1991; 81: 263268.Google Scholar
7. Bloem, BR, Beckley, DJ, van Dijk, JG, Zwinderman, AH, Roos, RAC. Are medium and long latency reflexes a screening tool for early Parkinson’s disease? J Neurol Sci 1992; 113: 3842.Google Scholar
8. , , Schieppati, M, Nardone, A. Free and supported stance in Parkinson’s disease. Brain 1991; 114: 12271244.Google Scholar
9. LoMonaco, E, Hui-Chan, CWY, Paquet, N. A spring-activated tilting apparatus for the study of balance control in man. J Neurosci Methods 1995; 58: 3948.CrossRefGoogle Scholar
10. Hui-Chan, CWY, LoMonaco, E, Paquet, N. Interaction of vestibulospinal and somatosensory inputs in the control of balance in man. Soc Neurosci Abstr 1991; 17: 1026.Google Scholar
11. Reichert, WH, Doolittle, J, McDowell, FH. Vestibular dysfunction in Parkinson’s Disease. Neurology 1982; 32: 11331138.Google Scholar
12. , MM, Yahr, MD. Parkinsonism: onset, progression and mortality. Neurology 1967; 17: 427442.CrossRefGoogle Scholar
13. Bonnet, AM, Loria, Y, Saint-Hilaire, MH, Lhermite, F. Agid, Y. Does long-term agravation of Parkinson’s disease result from nondopaminergic lesions? Neurology 1987; 37: 15391542.Google Scholar
14. Traccis, S, Rosati, G, Patraskakis, S, et al. Influence of neck receptors on soleus motoneuron excitability in man. Exp Neurol 1987; 95: 7684.CrossRefGoogle ScholarPubMed
15. Wilson, VJ, Peterson, BW. Vestibulospinal and reticulospinal systems. In: Brooks VB, ed. American Physiological Society’s Handbook of Physiology. Section I. The Nervous System, Vol. 2: Motor Control. Williams and Wilkins: Baltimore, 1981: 667702.Google Scholar
16. Nashner, LM, Berthoz, A. Visual contribution to rapid motor responses during postural control. Brain Res 1978; 150: 403407.Google Scholar
17. Davies, M. The mammalian startle response. In: Eaton, RC, ed. Neural Mechanisms of Startle Behavior. Plenum Press: New York, 1984: 287351.CrossRefGoogle Scholar
18. Crone, C, Hultborn, H, Mazières, L, et al. Sensitivity of monosynaptic test reflexes to facilitation and inhibition as a function of the test reflex size: a study in man and cat. Exp Brain Res 1990; 81: 3545.Google Scholar
19. Meink, HM. Facilitation and inhibition of the human H reflex as a function of the amplitude of the control reflex. Electroencephalogr Clin Neurophysiol 1980; 48: 203211.Google Scholar
20. Verrier, MC. Alterations in H-reflex magnitude by variations in baseline EMG excitability. Electroencephalogr Clin Neurophysiol 1985; 60: 492499.Google Scholar
21. Tatton, WG, Lee, RG. Evidence for abnormal long-loop reflexes in rigid Parkinsonian patients. Brain Res 1975; 100: 671676.Google Scholar
22. Chan, CWY, Kearney, RE, Melvill Jones, G. Tibialis anterior response to sudden ankle displacements in normal and parkinsonian subjects. Brain Res 1979; 173: 303314.Google Scholar
23. Delwaide, PJ, Schwab, RS, Young, RR. Polysynaptic spinal reflexes in Parkinson’s Disease. Neurology 1974; 24: 820827.Google Scholar
24. Cody, FWJ, Macdermott, N, Matthews, PBC, Richardson, HC. Observations on the genesis of the stretch reflex in Parkinson’s disease. Brain 1986; 109: 229249.CrossRefGoogle ScholarPubMed
25. Katz, R, y, E. Recurrent inhibition of alphamotoneurons in patients with upper motor lesions. Brain 1982; 105: 103124.Google Scholar
26. Delwaide, PJ. Are there modifications in spinal cord functions of parkinsonian patients? In: Delwaide, PJ, Agnoli, A, eds. Clinical Neurophysiology in Parkinsonism. Amsterdam: Elsevier, 1985: 1932.Google Scholar
27. Tanaka, R. Reciprocal la inhibition during voluntary movements in man. Exp Brain Res 1974: 21: 529540.Google Scholar
28. Delwaide, PJ, Pepin, JL, Maertens de Noordhout A. Short-latency autogenic inhibition in patients with parkinsonian rigidity. Ann Neurol 1991; 30: 8389.CrossRefGoogle ScholarPubMed
29. Pierrot-Deseilligny, E, Morin, C, Bergego, C, Tankov, N. Pattern of group I fibers projections from ankle flexor and extensor muscle in man. Exp Brain Res 1981; 42: 337350.Google Scholar