Hostname: page-component-5d59c44645-l48q4 Total loading time: 0 Render date: 2024-03-02T03:12:13.877Z Has data issue: false hasContentIssue false

Einstein–Maxwell Equations on Four-dimensional Lie Algebras

Published online by Cambridge University Press:  09 May 2019

Caner Koca
Department of Mathematics, NYC College of Technology of CUNY, Brooklyn, NY 11021, USA Email:
Mehdi Lejmi
Department of Mathematics, Bronx Community College of CUNY, Bronx, NY 10453, USA Email:


We classify up to automorphisms all left-invariant non-Einstein solutions to the Einstein–Maxwell equations on four-dimensional Lie algebras.

© Canadian Mathematical Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


The authors were supported in part by a PSC-CUNY research award #61768-00 49.


Apostolov, V., Calderbank, D. M. J., and Gauduchon, P., Ambitoric geometry I: Einstein metrics and extremal ambikähler structures . J. Reine Angew. Math. 721(2016), 109147. Google Scholar
Apostolov, V. and Maschler, G., Conformally Kähler, Einstein–Maxwell geometry . J. Eur. Math. Soc. 21(2019), no. 5, 13191360. Google Scholar
Drăghici, T., On some 4-dimensional almost Kähler manifolds . Kodai Math. J. 18(1995), no. 1, 156168. Google Scholar
Fino, A., Almost Kähler 4-dimensional Lie groups with J-invariant Ricci tensor . Differential Geom. Appl. 23(2005), 1, 2637. Google Scholar
Futaki, A. and Ono, H., Conformally Einstein–Maxwell Kähler metrics and structure of the automorphism group . Math. Z. 292(2019), no. 1–2, 571589. Google Scholar
Futaki, A. and Ono, H., On the existence problem of Einstein–Maxwell Kähler metrics. arxiv:1803.06801 Google Scholar
Futaki, A. and Ono, H., Volume minimization and conformally Kähler, Einstein–Maxwell geometry . J. Math. Soc. Japan 70(2018), 4, 14931521. Google Scholar
Karki, M. B. and Thompson, G., Four-dimensional Einstein Lie groups . Differ. Geom. Dyn. Syst. 18(2016), 4357.Google Scholar
Koca, C. and Tønnesen-Friedman, C. W., Strongly Hermitian Einstein–Maxwell solutions on ruled surfaces . Ann. Global Anal. Geom. 50(2016), no. 1, 2946. Google Scholar
Lahdili, A., Conformally Kähler, Einstein–Maxwell metrics and boundedness of the modified Mabuchi-functional. arxiv:1710.00235 Google Scholar
Lahdili, A., Automorphisms and deformations of conformally Kähler, Einstein–Maxwell metrics . J. Geom. Anal. 29(2019), no. 1, 542568. Google Scholar
LeBrun, C., The Einstein–Maxwell equations, extremal Kähler metrics, and Seiberg–Witten theory . In: The many facets of geometry . Oxford University Press, Oxford, 2010, pp. 1733. Google Scholar
LeBrun, C., The Einstein–Maxwell equations, Kähler metrics, and Hermitian geometry . J. Geom. Phys. 91(2015), 163171. Google Scholar
LeBrun, C., The Einstein–Maxwell equations and conformally Kähler geometry . Comm. Math. Phys. 344(2016), no. 2, 621653. Google Scholar
Mubarakzjanov, G. M., Classification of real structures of Lie algebras of fifth order . Izv. Vysš. Učebn. Zaved. Matematika 1963(1963), no. 3 (34), 99106.Google Scholar
Patera, J., Sharp, R. T., and Winternitz, P., Invariants of real low dimension Lie algebras . J. Math. Phys. 17(1976), 986994. Google Scholar
Shao, H., Compactness and rigidity of Kähler surfaces with constant scalar curvature. arxiv:1304.0853 Google Scholar
Yamabe, H., On a deformation of Riemannian structures on compact manifolds . Osaka Math. J. 12(1960), 2137.Google Scholar