Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-5rzhg Total loading time: 0.162 Render date: 2021-11-30T00:49:53.644Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Einstein–Maxwell Equations on Four-dimensional Lie Algebras

Published online by Cambridge University Press:  09 May 2019

Caner Koca
Affiliation:
Department of Mathematics, NYC College of Technology of CUNY, Brooklyn, NY 11021, USA Email: ckoca@citytech.cuny.edu
Mehdi Lejmi
Affiliation:
Department of Mathematics, Bronx Community College of CUNY, Bronx, NY 10453, USA Email: mehdi.lejmi@bcc.cuny.edu

Abstract

We classify up to automorphisms all left-invariant non-Einstein solutions to the Einstein–Maxwell equations on four-dimensional Lie algebras.

Type
Article
Copyright
© Canadian Mathematical Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors were supported in part by a PSC-CUNY research award #61768-00 49.

References

Apostolov, V., Calderbank, D. M. J., and Gauduchon, P., Ambitoric geometry I: Einstein metrics and extremal ambikähler structures . J. Reine Angew. Math. 721(2016), 109147. https://doi.org/10.1515/crelle-2014-0060 Google Scholar
Apostolov, V. and Maschler, G., Conformally Kähler, Einstein–Maxwell geometry . J. Eur. Math. Soc. 21(2019), no. 5, 13191360. https://doi.org/10.4171/JEMS/862 CrossRefGoogle Scholar
Drăghici, T., On some 4-dimensional almost Kähler manifolds . Kodai Math. J. 18(1995), no. 1, 156168. https://doi.org/10.2996/kmj/1138043359 CrossRefGoogle Scholar
Fino, A., Almost Kähler 4-dimensional Lie groups with J-invariant Ricci tensor . Differential Geom. Appl. 23(2005), 1, 2637. https://doi.org/10.1016/j.difgeo.2005.03.003 CrossRefGoogle Scholar
Futaki, A. and Ono, H., Conformally Einstein–Maxwell Kähler metrics and structure of the automorphism group . Math. Z. 292(2019), no. 1–2, 571589. https://doi.org/10.1007/s00209-018-2112-3 CrossRefGoogle Scholar
Futaki, A. and Ono, H., On the existence problem of Einstein–Maxwell Kähler metrics. arxiv:1803.06801 Google Scholar
Futaki, A. and Ono, H., Volume minimization and conformally Kähler, Einstein–Maxwell geometry . J. Math. Soc. Japan 70(2018), 4, 14931521. https://doi.org/10.2969/jmsj/77837783 CrossRefGoogle Scholar
Karki, M. B. and Thompson, G., Four-dimensional Einstein Lie groups . Differ. Geom. Dyn. Syst. 18(2016), 4357.Google Scholar
Koca, C. and Tønnesen-Friedman, C. W., Strongly Hermitian Einstein–Maxwell solutions on ruled surfaces . Ann. Global Anal. Geom. 50(2016), no. 1, 2946. https://doi.org/10.1007/s10455-016-9499-z CrossRefGoogle Scholar
Lahdili, A., Conformally Kähler, Einstein–Maxwell metrics and boundedness of the modified Mabuchi-functional. arxiv:1710.00235 Google Scholar
Lahdili, A., Automorphisms and deformations of conformally Kähler, Einstein–Maxwell metrics . J. Geom. Anal. 29(2019), no. 1, 542568. https://doi.org/10.1007/s12220-018-0010-x CrossRefGoogle Scholar
LeBrun, C., The Einstein–Maxwell equations, extremal Kähler metrics, and Seiberg–Witten theory . In: The many facets of geometry . Oxford University Press, Oxford, 2010, pp. 1733. https://doi.org/10.1093/acprof:oso/9780199534920.003.0003 CrossRefGoogle Scholar
LeBrun, C., The Einstein–Maxwell equations, Kähler metrics, and Hermitian geometry . J. Geom. Phys. 91(2015), 163171. https://doi.org/10.1016/j.geomphys.2015.01.009 CrossRefGoogle Scholar
LeBrun, C., The Einstein–Maxwell equations and conformally Kähler geometry . Comm. Math. Phys. 344(2016), no. 2, 621653. https://doi.org/10.1007/s00220-015-2568-5 CrossRefGoogle Scholar
Mubarakzjanov, G. M., Classification of real structures of Lie algebras of fifth order . Izv. Vysš. Učebn. Zaved. Matematika 1963(1963), no. 3 (34), 99106.Google Scholar
Patera, J., Sharp, R. T., and Winternitz, P., Invariants of real low dimension Lie algebras . J. Math. Phys. 17(1976), 986994. https://doi.org/10.1063/1.522992 CrossRefGoogle Scholar
Shao, H., Compactness and rigidity of Kähler surfaces with constant scalar curvature. arxiv:1304.0853 Google Scholar
Yamabe, H., On a deformation of Riemannian structures on compact manifolds . Osaka Math. J. 12(1960), 2137.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Einstein–Maxwell Equations on Four-dimensional Lie Algebras
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Einstein–Maxwell Equations on Four-dimensional Lie Algebras
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Einstein–Maxwell Equations on Four-dimensional Lie Algebras
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *