No CrossRef data available.
Article contents
Einstein–Maxwell Equations on Four-dimensional Lie Algebras
Part of:
Global differential geometry
Local differential geometry
Lie algebras and Lie superalgebras
Published online by Cambridge University Press: 09 May 2019
Abstract
We classify up to automorphisms all left-invariant non-Einstein solutions to the Einstein–Maxwell equations on four-dimensional Lie algebras.
MSC classification
Primary:
17B81: Applications to physics
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2019
Footnotes
The authors were supported in part by a PSC-CUNY research award #61768-00 49.
References
Apostolov, V., Calderbank, D. M. J., and Gauduchon, P.,
Ambitoric geometry I: Einstein metrics and extremal ambikähler structures
. J. Reine Angew. Math.
721(2016), 109–147. https://doi.org/10.1515/crelle-2014-0060
Google Scholar
Apostolov, V. and Maschler, G.,
Conformally Kähler, Einstein–Maxwell geometry
. J. Eur. Math. Soc.
21(2019), no. 5, 1319–1360. https://doi.org/10.4171/JEMS/862
Google Scholar
Drăghici, T.,
On some 4-dimensional almost Kähler manifolds
. Kodai Math. J.
18(1995), no. 1, 156–168. https://doi.org/10.2996/kmj/1138043359
Google Scholar
Fino, A.,
Almost Kähler 4-dimensional Lie groups with J-invariant Ricci tensor
. Differential Geom. Appl.
23(2005), 1, 26–37. https://doi.org/10.1016/j.difgeo.2005.03.003
Google Scholar
Futaki, A. and Ono, H.,
Conformally Einstein–Maxwell Kähler metrics and structure of the automorphism group
. Math. Z.
292(2019), no. 1–2, 571–589. https://doi.org/10.1007/s00209-018-2112-3
Google Scholar
Futaki, A. and Ono, H., On the existence problem of Einstein–Maxwell Kähler metrics. arxiv:1803.06801
Google Scholar
Futaki, A. and Ono, H.,
Volume minimization and conformally Kähler, Einstein–Maxwell geometry
. J. Math. Soc. Japan
70(2018), 4, 1493–1521. https://doi.org/10.2969/jmsj/77837783
Google Scholar
Karki, M. B. and Thompson, G.,
Four-dimensional Einstein Lie groups
. Differ. Geom. Dyn. Syst.
18(2016), 43–57.Google Scholar
Koca, C. and Tønnesen-Friedman, C. W.,
Strongly Hermitian Einstein–Maxwell solutions on ruled surfaces
. Ann. Global Anal. Geom.
50(2016), no. 1, 29–46. https://doi.org/10.1007/s10455-016-9499-z
Google Scholar
Lahdili, A., Conformally Kähler, Einstein–Maxwell metrics and boundedness of the modified Mabuchi-functional. arxiv:1710.00235
Google Scholar
Lahdili, A.,
Automorphisms and deformations of conformally Kähler, Einstein–Maxwell metrics
. J. Geom. Anal.
29(2019), no. 1, 542–568. https://doi.org/10.1007/s12220-018-0010-x
Google Scholar
LeBrun, C.,
The Einstein–Maxwell equations, extremal Kähler metrics, and Seiberg–Witten theory
. In:
The many facets of geometry
. Oxford University Press, Oxford, 2010, pp. 17–33. https://doi.org/10.1093/acprof:oso/9780199534920.003.0003
Google Scholar
LeBrun, C.,
The Einstein–Maxwell equations, Kähler metrics, and Hermitian geometry
. J. Geom. Phys.
91(2015), 163–171. https://doi.org/10.1016/j.geomphys.2015.01.009
Google Scholar
LeBrun, C.,
The Einstein–Maxwell equations and conformally Kähler geometry
. Comm. Math. Phys.
344(2016), no. 2, 621–653. https://doi.org/10.1007/s00220-015-2568-5
Google Scholar
Mubarakzjanov, G. M.,
Classification of real structures of Lie algebras of fifth order
. Izv. Vysš. Učebn. Zaved. Matematika
1963(1963), no. 3 (34), 99–106.Google Scholar
Patera, J., Sharp, R. T., and Winternitz, P.,
Invariants of real low dimension Lie algebras
. J. Math. Phys.
17(1976), 986–994. https://doi.org/10.1063/1.522992
Google Scholar
Shao, H., Compactness and rigidity of Kähler surfaces with constant scalar curvature. arxiv:1304.0853
Google Scholar
Yamabe, H.,
On a deformation of Riemannian structures on compact manifolds
. Osaka Math. J.
12(1960), 21–37.Google Scholar