Skip to main content Accessibility help
×
Home

Reduced pulmonary function in children with the Fontan circulation affects their exercise capacity

  • Iren Lindbak Matthews (a1), Per Morten Fredriksen (a2), Per G. Bjørnstad (a3), Erik Thaulow (a3) and Morten Gronn (a4)...

Abstract

Most children with functionally univentricular hearts nowadays are treated surgically by creating a total cavopulmonary connection. In the resulting Fontan circulation, the venous return and the pulmonary arterial bed are coupled in series, bypassing the heart. This gives the potential for interaction between the abnormal circulation and function of the lungs. In this study, we investigated the pattern of impairment of pulmonary function, and its relation to decreased exercise capacity.

We performed spirometry in 33 (85 percent) of 39 eligible Norwegian children, aged from 8 to 16, with a total cavopulmonary connection, along with whole body plethysmography, the carbon monoxide single breath test, and a peak treadmill exercise test. The single breath test showed a mean corrected diffusing capacity of 66.5 percent of predicted, giving a z score of minus 2.88. The mean residual volume measured by whole body plethysmography was 146.8 percent, equivalent to a z score of 2.46, whereas the mean residual volume measured by the single breath test was 102.4 percent of predicted, this being the same as a z score of 0.43. The mean peak treadmill exercise test was 70.0 percent of predicted, equivalent with a z score of minus 3.07. Mean forced vital capacity was 85.7 percent of predicted, the equivalent z score being minus 0.92. Lung function correlated with the peak treadmill exercise test.

We have shown, therefore, that children with the Fontan circulation have reduced diffusing capacity, possibly caused by the abnormal circulation through the lungs. The difference between residual volume measured by plethysmography and the single breath test implies trapping of air. The correlation of parameters for lung function with peak consumption of oxygen during exercise indicates that the abnormalities of pulmonary function may affect physical capacity.

Copyright

Corresponding author

Correspondence to: Iren Lindbak Matthews, Paediatric Pulmonology and Allergology Unit, Paediatrics Department, Rikshospitalet University Hospital, Sognsvannsveien 20, 0027 Oslo, Norway. Tel: +47 2307 4494; Fax: +47 2307 4510; E-mail: iren.matthews@rikshospitalet.no, n.i.l.matthews@medisin.uio.no

References

Hide All

References

Fontan F, Mounicot FB, Baudet E, Simonneau J, Gordo J, Gouffrant JM. [“Correction” of tricuspid atresia. 2 cases “corrected” using a new surgical technic]. Ann Chir Thorac Cardiovasc 1971; 10: 3947.
Joshi VM, Carey A, Simpson P, Paridon SM. Exercise performance following repair of hypoplastic left heart syndrome: A comparison with other types of Fontan patients. Pediatr Cardiol 1997; 18: 357360.
Nir A, Driscoll DJ, Mottram CD, et al. Cardiorespiratory response to exercise after the Fontan operation: a serial study. J Am Coll Cardiol 1993; 22: 216220.
Weipert J, Koch W, Haehnel JC, Meisner H. Exercise capacity and mid-term survival in patients with tricuspid atresia and complex congenital cardiac malformations after modified Fontan-operation. Eur J Cardiothorac Surg 1997; 12: 574580.
Zajac A, Tomkiewicz L, Podolec P, Tracz W, Malec E. Cardiorespiratory response to exercise in children after modified fontan operation. Scand Cardiovasc J 2002; 36: 8085.
Larsson ES, Eriksson BO, Sixt R. Decreased lung function and exercise capacity in Fontan patients. A long-term follow-up. Scand Cardiovasc J 2003; 37: 5863.
Ohuchi H, Ohashi H, Takasugi H, Yamada O, Yagihara T, Echigo S. Restrictive ventilatory impairment and arterial oxygenation characterize rest and exercise ventilation in patients after Fontan operation. Pediatr Cardiol 2004; 25: 513521.
Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl 1993; 16: 540.
Zapletal A, Samanek M, Paul T. Lung function in Children and Adolescents. Methods, Reference values. 22 ed. Karger, Basel; 1987.
Stam H, van den BA, Grunberg K, Stijnen T, Tiddens HA, Versprille A. Pulmonary diffusing capacity at reduced alveolar volumes in children. Pediatric Pulmonology 1996; 21: 8489.
Fredriksen PM, Ingjer F, Nystad W, Thaulow E. Aerobic endurance testing of children and adolescents–a comparison of two treadmill-protocols. Scand J Med Sci Sports 1998; 8: 203207.
Pettersen SA, Fredriksen PM, Ingjer E. The correlation between peak oxygen uptake (VO2 peak) and running performance in children and adolescents. Aspects of different units. Scand J Med Sci Sports 2001; 11: 223228.
He Q, Albertsson-Wikland K, Karlberg J. Population-based body mass index reference values from Goteborg, sweden: birth to 18 years of age. Acta Paediatr 2000; 89: 582592.
Knudtzon J, Waaler PE, Skjaerven R, Solberg LK, Steen J. [New Norwegian percentage charts for height, weight and head circumference for age groups 0–17 years]. Tidsskr Nor Laegeforen 1988; 108: 21252135.
Waaler PE. Anthropometric studies in Norwegian children. Acta Paediatr Scand Suppl 1983; 308: 141.
Ohuchi H, Ohashi H, Takasugi H, Yamada O, Yagihara T, Echigo S. Restrictive ventilatory impairment and arterial oxygenation characterize rest and exercise ventilation in patients after fontan operation. Pediatr Cardiol 2004; 25: 513521.
Bridges ND, Lock JE, Mayer Jr JE, Burnett J, Castaneda AR. Cardiac catheterization and test occlusion of the interatrial communication after the fenestrated Fontan operation. J Am Coll Cardiol 1995; 25: 17121717.
Levy M, Danel C, Tamisier D, Vouhe P, Leca F. Histomorphometric analysis of pulmonary vessels in single ventricle for better selection of patients for the Fontan operation. J Thorac Cardiovasc Surg 2002; 123: 263270.
Rosenthal DN, Friedman AH, Kleinman CS, Kopf GS, Rosenfeld LE, Hellenbrand WE. Thromboembolic complications after Fontan operations. Circulation 1995; 92: II287II293.
Svanes C, Omenaas E, Jarvis D, Chinn S, Gulsvik A, Burney P. Parental smoking in childhood and adult obstructive lung disease: results from the European Community Respiratory Health Survey. Thorax 2004; 59: 295302.
Rizzi M, Sergi M, Andreoli A, Pecis M, Bruschi C, Fanfulla F. Environmental tobacco smoke may induce early lung damage in healthy male adolescents. Chest 2004; 125: 13871393.
Durongpisitkul K, Driscoll DJ, Mahoney DW, et al. Cardiorespiratory response to exercise after modified Fontan operation: determinants of performance. J Am Coll Cardiol 1997; 29: 785790.
Driscoll DJ, Durongpisitkul K. Exercise testing after the Fontan operation. Pediatr Cardiol 1999; 20: 5759.
Fredriksen PM, Therrien J, Veldtman G, Warsi MA, Liu P, Siu S et al. Lung function and aerobic capacity in adult patients following modified Fontan procedure. Heart 2001; 85: 295299.
Fredriksen PM, Kahrs N, Blaasvaer S, et al. Effect of physical training in children and adolescents with congenital heart disease. Cardiol Young 2000; 10: 107114.
Redington AN, Penny D, Shinebourne EA. Pulmonary blood flow after total cavopulmonary shunt. Br Heart J 1991; 65: 213217.
Dimopoulou I, Tsintzas OK, Daganou M, Cokkinos DV, Tzelepis GE. Contribution of lung function to exercise capacity in patients with chronic heart failure. Respiration 1999; 66: 144149.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed