Skip to main content
×
×
Home

Neuroimaging of the dopamine/reward system in adolescent drug use

  • Monique Ernst (a1) and Monica Luciana (a2)
Abstract

Adolescence is characterized by heightened risk-taking, including substance misuse. These behavioral patterns are influenced by ontogenic changes in neurotransmitter systems, particularly the dopamine system, which is fundamentally involved in the neural coding of reward and motivated approach behavior. During adolescence, this system evidences a peak in activity. At the same time, the dopamine (DA) system is neuroplastically altered by substance abuse, impacting subsequent function. Here, we describe properties of the dopamine system that change with typical adolescent development and that are altered with substance abuse. Much of this work has been gleaned from animal models due to limitations in measuring dopamine in pediatric samples. Structural and functional neuroimaging techniques have been used to examine structures that are heavily DA-innervated; they measure morphological and functional changes with age and with drug exposure. Presenting marijuana abuse as an exemplar, we consider recent findings that support an adolescent peak in DA-driven reward-seeking behavior and related deviations in motivational systems that are associated with marijuana abuse/dependence. Clinicians are advised that (1) chronic adolescent marijuana use may lead to deficiencies in incentive motivation, (2) that this state is due to marijuana’s interactions with the developing DA system, and (3) that treatment strategies should be directed to remediating resultant deficiencies in goal-directed activity.

Copyright
Corresponding author
*Address for correspondence: Monique Ernst, MD, PhD, Head of Neurodevelopment of Reward Systems, Section on Neurobiology of Fear and Anxiety (NFA), Emotional Development and Affective Neuroscience Branch (EDAN), National Institute of Mental Health/NIH, 15K North Drive, Bethesda, MD 20892, USA. (Email: ernstm@mail.nih.gov)
References
Hide All
1. Johnston LD, O’Malley PM, Bachman JG, Schulenberg JE. Monitoring the Future national results on adolescent drug use: Overview of key findings, 2010. Ann Arbor, MI: Institute for Social Research, The University of Michigan, 2011.
2. Sustance Abuse and Mental Health Services Adminstration. The NSDUH Report: Trends in Adolescent Substance Use and Perception of Risk from Substance Use. Sustance Abuse and Mental Health Services Adminstration: Rockville, MD; 2013.
3. Eaton DK, Kann L, Kinchen S, et al. Youth Behavior Surveillance—United States, 2011. Atlanta, GA: CDC; 2012.
4. U.S. Department of Health and Human Services, Sustance Abuse and Mental Health Services Adminstration. Results from the 2010 National Survey on Drug Use and Health: Summary of National Findings. Rockville, MD: Sustance Abuse and Mental Health Services Adminstration; 2011.
5. Merikangas KR, Nakamura EF, Kessler RC. Epidemiology of mental disorders in children and adolescents. Dialogues Clin Neurosci. 2009; 11(1): 720.
6. Armstrong TD, Costello EJ. Community studies on adolescent substance use, abuse, or dependence and psychiatric comorbidity. J COnsult Clin Psychol. 2002; 70(6): 12241239.
7. Arnett JJ. Adolescent storm and stress, reconsidered. Am Psychol. 1999; 54(5): 317326.
8. Dahl RE. Adolescent brain development: a period of vulnerabilities and opportunities. Keynote address. Ann N Y Acad Sci. 2004; 1021: 122.
9. Ernst M, Pine DS, Hardin M. Triadic model of the neurobiology of motivated behavior in adolescence. Psychol Med. 2006; 36(3): 299312.
10. Nelson EE, Leibenluft E, McClure EB, Pine DS. The social re-orientation of adolescence: a neuroscience perspective on the process and its relation to psychopathology. Psychol Med. 2005; 35(2): 163174.
11. Steinberg L. Risk taking in adolescence: what changes, and why? Ann N Y Acad SciAnn N Y Acad Sci. 2004; 1021: 5158.
12. Ernst M, Hale E, O’Connell K. Response to commentaries regarding the Triadic Systems Model perspective. Brain Cogn. 2014; 89: 122126.
13. Arnett JJ. G. Stanley Hall’s Adolescence: brilliance and nonsense. Hist Psychol. 2006; 9(3): 186197.
14. Hall G. Adolescence: Its Psychology and Its Relations to Physiology, Anthropology, Sociology, Sex, Crime, Religion and Education. New York: Appleton; 1904.
15. Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000; 24(4): 417463.
16. Ernst M, Romeo RD, Andersen SL. Neurobiology of the development of motivated behaviors in adolescence: a window into a neural systems model. Pharmacol Biochem Behav. 2009; 93(3): 199211.
17. Wahlstrom D, Collins P, White T, Luciana M. Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn. 2010; 72(1): 146159.
18. Robbins TW, Everitt BJ. Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol. 1996; 6(2): 228236.
19. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010; 35(1): 217238.
20. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011; 12(11): 652669.
21. Garavan H, Weierstall K. The neurobiology of reward and cognitive control systems and their role in incentivizing health behavior. Prev Med. 2012; 55(Suppl): S17S23.
22. Wise RA, Rompre PP. Brain dopamine and reward. Annu Rev Psychol. 1989; 40: 191225.
23. Wise RA. Neurobiology of addiction. Curr Opin Neurobiol. 1996; 6(2): 243251.
24. Volkow ND, Fowler JS, Wang GJ. The addicted human brain: insights from imaging studies. J Clin Invest. 2003; 111(10): 14441451.
25. Luciana M, Wahlstrom D, Porter JN, Collins PF. Dopaminergic modulation of incentive motivation in adolescence: age-related changes in signaling, individual differences, and implications for the development of self-regulation. Dev Psychol. 2012; 48(3): 844861.
26. Carlsson A, Lindqvist M, Magnusson T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature. 1957; 180(4596): 1200.
27. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011; 63(1): 182217.
28. Bjorklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci. 2007; 30(5): 194202.
29. Moore H, West AR, Grace AA. The regulation of forebrain dopamine transmission: relevance to the pathophysiology and psychopathology of schizophrenia. Biol Psychiatry. 1999; 46(1): 4055.
30. Nemoda Z, Szekely A, Sasvari-Szekely M. Psychopathological aspects of dopaminergic gene polymorphisms in adolescence and young adulthood. Neurosci Biobehav Rev. 2011; 35(8): 16651686.
31. Joyce JN. Multiple dopamine receptors and behavior. Neurosci Biobehav Rev. 1983; 7(2): 227256.
32. Kohno M, Ghahremani DG, Morales AM, et al. Risk-taking behavior: dopamine D2/D3 receptors, feedback, and frontolimbic activity. Cereb Cortex. 2015; 25(1): 236245.
33. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998; 78(1): 189225.
34. Floresco SB, Magyar O. Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology (Berl). 2006; 188(4): 567585.
35. Depue RA, Collins PF. Neurobiology of the structure of personality: dopamine, facilitation of incentive motivation, and extraversion. Behav Brain Sci. 1999; 22(3): 491517; discussion 518–569.
36. Swanson LW. The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull. 1982; 9(1–6): 321353.
37. Kaczmarek LK, Levitan I. Neuromodulation: The Biochemical Control of Neuronal Excitability. Oxford, England: Oxford University Press; 1987.
38. Trudeau LE. Glutamate co-transmission as an emerging concept in monoamine neuron function. J Psychiatry Neurosci. 2004; 29(4): 296310.
39. Luciana M, Collins PF. Incentive motivation, cognitive control, and the adolescent brain: is it time for a paradigm shift? Child Dev Perspect. 2012; 6(4): 392399.
40. Garris PA, Rebec GV. Modeling fast dopamine neurotransmission in the nucleus accumbens during behavior. Behav Brain Res. 2002; 137(1–2): 4763.
41. Rice ME, Cragg SJ. Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res Rev. 2008; 58(2): 303313.
42. Floresco SB, West AR, Ash B, Moore H, Grace AA. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nature Neurosci. 2003; 6(9): 968973.
43. Goto Y, Otani S, Grace AA. The yin and yang of dopamine release: a new perspective. Neuropharmacology. 2007; 53(5): 583587.
44. Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci. 1984; 4(11): 28772890.
45. Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci. 1984; 4(11): 28662876.
46. Wanat MJ, Willuhn I, Clark JJ, Phillips PE. Phasic dopamine release in appetitive behaviors and drug addiction. Curr Drug Abuse Rev. 2009; 2(2): 195213.
47. Willuhn I, Wanat MJ, Clark JJ, Phillips PE. Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr Top Behav Neurosci. 2010; 3: 2971.
48. Schultz W. Multiple reward signals in the brain. Nat Rev Neurosci. 2000; 1(3): 199207.
49. Niv Y, Joel D, Dayan P. A normative perspective on motivation. Trends Cogn Sci. 2006; 10(8): 375381.
50. Niv Y, Daw ND, Joel D, Dayan P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (Berl). 2007; 191(3): 507520.
51. Ostlund SB, Wassum KM, Murphy NP, Balleine BW, Maidment NT. Extracellular dopamine levels in striatal subregions track shifts in motivation and response cost during instrumental conditioning. J Neurosci. 2011; 31(1): 200207.
52. Wahlstrom D, White T, Luciana M. Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neurosci Biobehav Rev. 2010; 34(5): 631648.
53. Andersen SL, Dumont NL, Teicher MH. Developmental differences in dopamine synthesis inhibition by (+/-)-7-OH-DPAT. Naunyn Schmiedebergs Arch Pharmacol. 1997; 356(2): 173181.
54. Gelbard HA, Teicher MH, Faedda G, Baldessarini RJ. Postnatal development of dopamine D1 and D2 receptor sites in rat striatum. Brain Res Dev Brain Res. 1989; 49(1): 123130.
55. Tarazi FI, Tomasini EC, Baldessarini RJ. Postnatal development of dopamine D1-like receptors in rat cortical and striatolimbic brain regions: an autoradiographic study. Dev Neurosci. 1999; 21(1): 4349.
56. Teicher MH, Andersen SL, Hostetter JC Jr. Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Brain Res Dev Brain Res. 1995; 89(2): 167172.
57. Giorgi O, De Montis G, Porceddu ML, et al. Developmental and age-related changes in D1-dopamine receptors and dopamine content in the rat striatum. Brain Res. 1987; 432(2): 283290.
58. Leslie CA, Robertson MW, Cutler AJ, Bennett JP Jr. Postnatal development of D1 dopamine receptors in the medial prefrontal cortex, striatum and nucleus accumbens of normal and neonatal 6-hydroxydopamine treated rats: a quantitative autoradiographic analysis. Brain Res Dev Brain Res. 1991; 62(1): 109114.
59. Tarazi FI, Tomasini EC, Baldessarini RJ. Postnatal development of dopamine D4-like receptors in rat forebrain regions: comparison with D2-like receptors. Brain Res Dev Brain Res. 1998; 110(2): 227233.
60. Rao PA, Molinoff PB, Joyce JN. Ontogeny of dopamine D1 and D2 receptor subtypes in rat basal ganglia: a quantitative autoradiographic study. Brain Res Dev Brain Res. 1991; 60(2): 161177.
61. Goto Y, Grace AA. Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat Neurosci. 2005; 8(6): 805812.
62. Jia JM, Zhao J, Hu Z, Lindberg D, Li Z. Age-dependent regulation of synaptic connections by dopamine D2 receptors. Nat Neurosci. 2013; 16(11): 16271636.
63. Crews F, He J, Hodge C. Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav. 2007; 86(2): 189199.
64. Selemon LD. A role for synaptic plasticity in the adolescent development of executive function. Transl Psychiatry. 2013; 3: e238.
65. Selemon LD. Frontal lobe synaptic plasticity in development and disease: modulation by the dopamine d1 receptor. Curr Pharm Des. 2014; 20(32): 51945201.
66. Sun X, Zhao Y, Wolf ME. Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons. J Neurosci. 2005; 25(32): 73427351.
67. Auclair N, Otani S, Soubrie P, Crepel F. Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons. J Neurophysiol. 2000; 83(6): 32873293.
68. Pascual M, Boix J, Felipo V, Guerri C. Repeated alcohol administration during adolescence causes changes in the mesolimbic dopaminergic and glutamatergic systems and promotes alcohol intake in the adult rat. J Neurochem. 2009; 108(4): 920931.
69. McCutcheon JE, Conrad KL, Carr SB, Ford KA, McGehee DS, Marinelli M. Dopamine neurons in the ventral tegmental area fire faster in adolescent rats than in adults. J Neurophysiol. 2012; 108(6): 16201630.
70. Harden KP, Tucker-Drob EM. Individual differences in the development of sensation seeking and impulsivity during adolescence: further evidence for a dual systems model. Dev Psychol. 2011; 47(3): 739746.
71. Steinberg L, Albert D, Cauffman E, Banich M, Graham S, Woolard J. Age differences in sensation seeking and impulsivity as indexed by behavior and self-report: evidence for a dual systems model. Dev Psychol. 2008; 44(6): 17641778.
72. Urosevic S, Collins P, Muetzel R, Lim K, Luciana M. Longitudinal changes in behavioral approach system sensitivity and brain structures involved in reward processing during adolescence. Dev Psychol. 2012; 48(5): 14881500.
73. Bjork JM, Pardini DA. Who are those “risk-taking adolescents”? Individual differences in developmental neuroimaging research. Dev Cogn Neurosci. 2015; 11: 5664.
74. Richards JM, Plate RC, Ernst M. A systematic review of fMRI reward paradigms used in studies of adolescents vs. adults: the impact of task design and implications for understanding neurodevelopment. Neurosci Biobehav Rev. 2013; 37(5): 976991.
75. Joel D, Weiner I. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience. 2000; 96(3): 451474.
76. Cohen JR, Asarnow RF, Sabb FW, et al. A unique adolescent response to reward prediction errors. Nat Neurosci. 2010; 13(6): 669671.
77. Di Chiara G. Drug addiction as dopamine-dependent associative learning disorder. Eur J Pharmacol. 1999; 375(1–3): 1330.
78. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988; 85(14): 52745278.
79. Fiorino DF, Coury A, Phillips AG. Dynamic changes in nucleus accumbens dopamine efflux during the Coolidge effect in male rats. J Neurosci. 1997; 17(12): 48494855.
80. Grace AA. The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction. 2000; 95(Suppl 2): S119S128.
81. Mastwal S, Ye Y, Ren M, et al. Phasic dopamine neuron activity elicits unique mesofrontal plasticity in adolescence. J Neurosci. 2014; 34(29): 94849496.
82. Howe MW, Tierney PL, Sandberg SG, Phillips PE, Graybiel AM. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature. 2013; 500(7464): 575579.
83. Kolb B. Brain plasticity and behavioral change. In: Craik F, Robert M, Sabourin M, eds. Advances in Psychological Science, Volume 2: Biological and Cognitive Aspects. East Sussex, UK: Psychology Press; 1998.
84. Robinson TE, Kolb B. Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci. 1997; 17(21): 84918497.
85. Volkow ND, Fowler JS, Gatley SJ, et al. PET evaluation of the dopamine system of the human brain. J Nucl Med. 1996; 37(7): 12421256.
86. Mizrahi R. Advances in PET analyses of stress and dopamine. Neuropsychopharmacology. 2010; 35(1): 348349.
87. Jucaite A, Fernell E, Halldin C, Forssberg H, Farde L. Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol Psychiatry. 2005; 57(3): 229238.
88. D’Ardenne K, McClure SM, Nystrom LE, Cohen JD. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science. 2008; 319(5867): 12641267.
89. Eapen M, Zald DH, Gatenby JC, Ding Z, Gore JC. Using high-resolution MR imaging at 7T to evaluate the anatomy of the midbrain dopaminergic system. AJNR Am J Neuroradiol. 2011; 32(4): 688694.
90. Sustance Abuse and Mental Health Services Adminstration. Results from the 2005 National Survey on Drug Use and Health: National Findings. Rockville, MD: Office of Applied Studies; 2006. DHHS Publication No. SMA 06-4194.
91. Johnston LD, O’Malley PM, Miech RA, Bachman JG, Schulenberg JE. Overview key findings on adolescent drug use. Sponsored by the National Institute on Drug Abuse at the National Institutes of Health, Monitoring the Future. Survey results on drug use 1975-2014, http://www.monitoringthefuture.org/pubs/monographs/mtf-overview2014.pdf.
92. Volkow ND, Baler RD, Compton WM, Weiss SR. Adverse health effects of marijuana use. New Engl J Med. 2014; 370(23): 22192227.
93. Gorelick DA, Levin KH, Copersino ML, et al. Diagnostic criteria for cannabis withdrawal syndrome. Drug Alcohol Depend. 2012; 123(1–3): 141147.
94. Oleson EB, Cheer JF. A brain on cannabinoids: the role of dopamine release in reward seeking. Cold Spring Harb Perspect Med. 2012; 2: 113.
95. Schweinsburg AD, Brown SA, Tapert SF. The influence of marijuana use on neurocognitive functioning in adolescents. Curr Drug Abuse Rev. 2008; 1(1): 99111.
96. Puig MV, Rose J, Schmidt R, Freund N. Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds. Front Neural Circuits. 2014; 8: 93.
97. Burns HD, Van Laere K, Sanabria-Bohorquez S, et al. [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proc Natl Acad Sci U S A. 2007; 104(23): 98009805.
98. Gilman JM, Kuster JK, Lee S, et al. Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users. J Neurosci. 2014; 34(16): 55295538.
99. Dennison M, Whittle S, Yucel M, et al. Mapping subcortical brain maturation during adolescence: evidence of hemisphere- and sex-specific longitudinal changes. Dev Sci. 2013; 16(5): 772791.
100. Ostby Y, Tamnes CK, Fjell AM, Westlye LT, Due-Tonnessen P, Walhovd KB. Heterogeneity in subcortical brain development: a structural magnetic resonance imaging study of brain maturation from 8 to 30 years. J Neurosci. 2009; 29(38): 1177211782.
101. Schneider S, Peters J, Bromberg U, et al. Risk taking and the adolescent reward system: a potential common link to substance abuse. Am J Psychiatry. 2012; 169(1): 3946.
102. Urošević S, Collins P, Muetzel R, Lim KO, Luciana M. Pubertal status associations with reward and threat sensitivities and subcortical brain volumes during adolescence. Brain Cogn. 2014; 89: 1526.
103. Arnone D, Barrick TR, Chengappa S, Mackay CE, Clark CA, Abou-Saleh MT. Corpus callosum damage in heavy marijuana use: preliminary evidence from diffusion tensor tractography and tract-based spatial statistics. Neuroimage. 2008; 41(3): 10671074.
104. Ashtari M, Cervellione K, Cottone J, Ardekani BA, Sevy S, Kumra S. Diffusion abnormalities in adolescents and young adults with a history of heavy cannabis use. J Psychiatr Res. 2009; 43(3): 189204.
105. Gruber SA, Dahlgren MK, Sagar KA, Gonenc A, Lukas SE. Worth the wait: effects of age of onset of marijuana use on white matter and impulsivity. Psychopharmacology (Berl). 2014; 231(8): 14551465.
106. Gruber SA, Silveri MM, Dahlgren MK, Yurgelun-Todd D. Why so impulsive? White matter alterations are associated with impulsivity in chronic marijuana smokers. Exp Clin Psychopharmacol. 2011; 19(3): 231242.
107. Heimer L, Alheid GF. Piecing together the puzzle of basal forebrain anatomy. Adv Exp Med Biol. 1991; 295: 142.
108. Kolb B, Gorny G, Limebeer CL, Parker LA. Chronic treatment with Delta-9-tetrahydrocannabinol alters the structure of neurons in the nucleus accumbens shell and medial prefrontal cortex of rats. Synapse. 2006; 60(6): 429436.
109. Cousijn J, Wiers RW, Ridderinkhof KR, van den Brink W, Veltman DJ, Goudriaan AE. Grey matter alterations associated with cannabis use: results of a VBM study in heavy cannabis users and healthy controls. Neuroimage. 2012; 59(4): 38453851.
110. Lorenzetti V, Lubman DI, Whittle S, Solowij N, Yucel M. Structural MRI findings in long-term cannabis users: what do we know? Subst Use Misuse. 2010; 45(11): 17871808.
111. Jager G, Ramsey NF. Long-term consequences of adolescent cannabis exposure on the development of cognition, brain structure and function: an overview of animal and human research. Curr Drug Abuse Rev. 2008; 1(2): 114123.
112. Batalla A, Bhattacharyya S, Yucel M, et al. Structural and functional imaging studies in chronic cannabis users: a systematic review of adolescent and adult findings. PLoS One. 2013; 8(2): e55821.
113. Volkow ND, Wang GJ, Telang F, et al. Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc Natl Acad Sci U S A. 2014; 111(30): E3149E3156.
114. Albrecht DS, Skosnik PD, Vollmer JM, et al. Striatal D(2)/D(3) receptor availability is inversely correlated with cannabis consumption in chronic marijuana users. Drug Alcohol Depend. 2013; 128(1–2): 5257.
115. Sevy S, Smith GS, Ma Y, et al. Cerebral glucose metabolism and D2/D3 receptor availability in young adults with cannabis dependence measured with positron emission tomography. Psychopharmacology (Berl). 2008; 197(4): 549556.
116. Stokes PR, Egerton A, Watson B, et al. History of cannabis use is not associated with alterations in striatal dopamine D2/D3 receptor availability. J Psychopharmacol. 2012; 26(1): 144149.
117. Urban NB, Slifstein M, Thompson JL, et al. Dopamine release in chronic cannabis users: a [11c]raclopride positron emission tomography study. Biol Psychiatry. 2012; 71(8): 677683.
118. Bloomfield MA, Morgan CJ, Kapur S, Curran HV, Howes OD. The link between dopamine function and apathy in cannabis users: an [18F]-DOPA PET imaging study. Psychopharmacology (Berl). 2014; 231(11): 22512259.
119. Murray JE, Dilleen R, Pelloux Y, et al. Increased impulsivity retards the transition to dorsolateral striatal dopamine control of cocaine seeking. Biol Psychiatry. 2014; 76(1): 1522.
120. Nestor L, Hester R, Garavan H. Increased ventral striatal BOLD activity during non-drug reward anticipation in cannabis users. Neuroimage. 2010; 49(1): 11331143.
121. van Hell HH, Vink M, Ossewaarde L, Jager G, Kahn RS, Ramsey NF. Chronic effects of cannabis use on the human reward system: an fMRI study. Eur Neuropsychopharmacol. 2010; 20(3): 153163.
122. Sneider JT, Mashhoon Y, Silveri MM. A review of magnetic resonance spectroscopy studies in marijuana using adolescents and adults. J Addict Res Ther. 2013; Suppl 4.
123. Silveri MM, Jensen JE, Rosso IM, Sneider JT, Yurgelun-Todd DA. Preliminary evidence for white matter metabolite differences in marijuana-dependent young men using 2D J-resolved magnetic resonance spectroscopic imaging at 4 Tesla. Psychiatry Res. 2011; 191(3): 201211.
124. Hermann D, Sartorius A, Welzel H, et al. Dorsolateral prefrontal cortex N-acetylaspartate/total creatine (NAA/tCr) loss in male recreational cannabis users. Biol Psychiatry. 2007; 61(11): 12811289.
125. Chang L, Cloak C, Yakupov R, Ernst T. Combined and independent effects of chronic marijuana use and HIV on brain metabolites. J Neuroimmune Pharmacol. 2006; 1(1): 6576.
126. Muetzel RL, Marjanska M, Collins PF, et al. In vivo H magnetic resonance spectroscopy in young-adult daily marijuana users. Neuroimage Clin. 2013; 2: 581589.
127. Prescot AP, Locatelli AE, Renshaw PF, Yurgelun-Todd DA. Neurochemical alterations in adolescent chronic marijuana smokers: a proton MRS study. Neuroimage. 2011; 57(1): 6975.
128. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. American J Psychiatry. 2005; 162(8): 14031413.
129. Hakamata Y, Lissek S, Bar-Haim Y, et al. Attention bias modification treatment: a meta-analysis toward the establishment of novel treatment for anxiety. Biol Psychiatry. 2010; 68(11): 982990.
130. Field M, Marhe R, Franken IH. The clinical relevance of attentional bias in substance use disorders. CNS Spectr. 2014; 19(3): 225230.
131. Sample S, Kadden R. Motivational Enhancement Therapy and Cognitive Behavioral Therapy for Adolescent Cannabis Users: 5 Sessions. Rockville, MD: Center for Substance Abuse Treatment; 2001.
132. Dennis M, Titus JC, Diamond G, et al. The Cannabis Youth Treatment (CYT) experiment: rationale, study design and analysis plans. Addiction. 2002; 97(Suppl 1): 1634.
133. Dennis M, Godley SH, Diamond G, et al. The Cannabis Youth Treatment (CYT) Study: main findings from two randomized trials. J Subst Abuse Treat. 2004; 27(3): 197213.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

CNS Spectrums
  • ISSN: 1092-8529
  • EISSN: 2165-6509
  • URL: /core/journals/cns-spectrums
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 18
Total number of PDF views: 98 *
Loading metrics...

Abstract views

Total abstract views: 459 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd January 2018. This data will be updated every 24 hours.