Skip to main content
×
Home
    • Aa
    • Aa

Boltzmann Samplers for the Random Generation of Combinatorial Structures

  • PHILIPPE DUCHON (a1), PHILIPPE FLAJOLET (a2), GUY LOUCHARD (a3) and GILLES SCHAEFFER (a4)
Abstract

This article proposes a surprisingly simple framework for the random generation of combinatorial configurations based on what we call Boltzmann models. The idea is to perform random generation of possibly complex structured objects by placing an appropriate measure spread over the whole of a combinatorial class – an object receives a probability essentially proportional to an exponential of its size. As demonstrated here, the resulting algorithms based on real-arithmetic operations often operate in linear time. They can be implemented easily, be analysed mathematically with great precision, and, when suitably tuned, tend to be very efficient in practice.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics