Skip to main content

An epigenetic pathway approach to investigating associations between prenatal exposure to maternal mood disorder and newborn neurobehavior

  • Elisabeth Conradt (a1), Daniel E. Adkins (a1), Sheila E. Crowell (a1), Catherine Monk (a2) (a3) and Michael S. Kobor (a4)...

Following recent advances in behavioral and psychiatric epigenetics, researchers are increasingly using epigenetic methods to study prenatal exposure to maternal mood disorder and its effects on fetal and newborn neurobehavior. Despite notable progress, various methodological limitations continue to obscure our understanding of the epigenetic mechanisms underpinning prenatal exposure to maternal mood disorder on newborn neurobehavioral development. Here we detail this problem, discussing limitations of the currently dominant analytical approaches (i.e., candidate epigenetic and epigenome-wide association studies), then present a solution that retains many benefits of existing methods while minimizing their shortcomings: epigenetic pathway analysis. We argue that the application of pathway-based epigenetic approaches that target DNA methylation at transcription factor binding sites could substantially deepen our mechanistic understanding of how prenatal exposures influence newborn neurobehavior.

Corresponding author
Address correspondence and reprint requests to: Elisabeth Conradt, University of Utah, Department of Psychology, 380 South 1530 East BEHS 602, Salt Lake City, UT 84112; E-mail:
Hide All

This manuscript was supported by the National Institute of Mental Health under Award Number R21MH109777 (to S.C. and E.C.), a Career Development Award from the National Institute on Drug Abuse 7K08DA038959-02 (to E.C.), and a grant from the University of Utah Consortium for Families and Health Research. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Mental Health, the National Institute on Drug Abuse, or the National Institutes of Health.

Hide All
Adkins, D. E., Rasmussen, K. M., & Docherty, A. R. (2017). Social epigenetics and human behavior. In Hopcroft, R. (Ed.), Oxford handbook of evolution, biology, and society. Oxford: Oxford University Press.
Appleton, A. A., Lester, B. M., Armstrong, D. A., Lesseur, C., & Marsit, C. J. (2015). Examining the joint contribution of placental NR3C1 and HSD11B2 methylation for infant neurobehavior. Psychoneuroendocrinology, 52, 3242. doi:10.1016/j.psyneuen.2014.11.004
Beijers, R., Buitelaar, J. K., & de Weerth, C. (2014). Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: Beyond the HPA axis. European Child and Adolescent Psychiatry, 23, 943956. doi:10.1007/s00787-014-0566-3
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate—A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B Methodological, 57, 289300.
Bird, A. (2007). Perceptions of epigenetics. Nature, 447, 396398. doi:10.1038/nature05913
Bock, C. (2012). Analysing and interpreting DNA methylation data. Nature Reviews Genetics, 13, 705719. doi:10.1038/nrg3273
Boyce, W. T., & Kobor, M. S. (2015). Development and the epigenome: The “synapse” of gene-environment interplay. Developmental Science, 18, 123. doi:10.1111/desc.12282
Breton, C. V., Marsit, C. J., Faustman, E., Nadeau, K., Goodrich, J. M., Dolinoy, D. C., … Murphy, S. K. (2017). Small-magnitude effect sizes in epigenetic end points are important in children's environmental health studies: The Children's Environmental Health and Disease Prevention Research Center's Epigenetics Working Group. Environmental Health Perspectives, 125. doi:10.1289/EHP595
Bromer, C., Marsit, C. J., Armstrong, D. A., Padbury, J. F., & Lester, B. (2013). Genetic and epigenetic variation of the glucocorticoid receptor (NR3c1) in placenta and newborn neurobehavior. Developmental Psychobiology, 55, 673683. doi:10.1002/dev.21061
Buss, C., Davis, E. P., Shahbaba, B., Pruessner, J. C., Head, K., & Sandman, C. A. (2012). Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proceedings of the National Academy of Sciences, 109, E1312E1319. doi:10.1073/pnas.1201295109
Conradt, E. (2017). Using principles of behavioral epigenetics to advance research on early-life stress. Child Development Perspectives, 11, 107112. doi:10.1111/cdep.12219
Conradt, E., Lester, B. M., Appleton, A. A., Armstrong, D. A., & Marsit, C. J. (2013). The roles of DNA methylation of NR3c1 and 11β–HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigentics, 8, 13211329. doi:10.4161/epi.26634
Davies, M. N., Krause, L., Bell, J. T., Gao, F., Ward, K. J., Wu, H., … Wang, J. (2014). Hypermethylation in the ZBTB20 gene is associated with major depressive disorder. Genome Biology, 15, R56. doi:10.1186/gb-2014-15-4-r56
Davis, E. P., Glynn, L. M., Schetter, C. D., Hobel, C., Chicz-Demet, A., & Sandman, C. A. (2007). Prenatal exposure to maternal depression and cortisol influences infant temperament. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 737746. doi:10.1097/chi.0b013e318047b775
De Bellis, M. D., Chrousos, G. P., Dorn, L. D., Burke, L., Helmers, K., Kling, M. A., … Putnam, F. W. (1994). Hypothalamic-pituitary-adrenal axis dysregulation in sexually abused girls. Journal of Clinical Endocrinology & Metabolism, 78, 249255. doi:10.1210/jcem.78.2.8106608
de Goede, O. M., Razzaghian, H. R., Price, E. M., Jones, M. J., Kobor, M. S., Robinson, W. P., & Lavoie, P. M. (2015). Nucleated red blood cells impact DNA methylation and expression analyses of cord blood hematopoietic cells. Clinical Epigenetics, 7. doi:10.1186/s13148-015-0129-6
de Moor, M. H. M., van den Berg, S. M., Verweij, K. J. H., Krueger, R. F., Luciano, M., Arias Vasquez, A., … Boomsma, D. I. (2015). Meta-analysis of genome-wide association studies for neuroticism, and the polygenic association with major depressive disorder. JAMA Psychiatry, 72, 642. doi:10.1001/jamapsychiatry.2015.0554
Dempster, E. L., Wong, C. C. Y., Lester, K. J., Burrage, J., Gregory, A. M., Mill, J., & Eley, T. C. (2014). Genome-wide methylomic analysis of monozygotic twins discordant for adolescent depression. Biological Psychiatry, 76, 977983. doi:10.1016/j.biopsych.2014.04.013
Docherty, A. R., Moscati, A., Adkins, D. E., Wallace, G. T., Kumar, G., Riley, B. P., … Bacanu, S.-A. (2017). Proof of concept: Molecular prediction of schizophrenia risk. Unpublished manuscript.
Docherty, A. R., Moscati, A., Dick, D., Savage, J. E., Salvatore, J. E., Cooke, M., … Kendler, K. S. (2017). Polygenic prediction of the phenome, across ancestry, in emerging adulthood. Psychological Medicine, 27, 110. doi:10.1101/124651
Essex, M. J., Klein, M. H., Cho, E., & Kalin, N. H. (2002). Maternal stress beginning in infancy may sensitize children to later stress exposure: Effects on cortisol and behavior. Biological Psychiatry, 52, 776784.
Essex, M. J., Thomas Boyce, W., Hertzman, C., Lam, L. L., Armstrong, J. M., Neumann, S. M. A., & Kobor, M. S. (2013). Epigenetic vestiges of early developmental adversity: Childhood stress exposure and DNA methylation in adolescence: Epigenetic vestiges of early adversity. Child Development, 84, 5875. doi:10.1111/j.1467-8624.2011.01641.x
Gandal, M. J., Leppa, V., Won, H., Parikshak, N. N., & Geschwind, D. H. (2016). The road to precision psychiatry: Translating genetics into disease mechanisms. Nature Neuroscience, 19, 13971407. doi:10.1038/nn.4409
Glynn, L. M., Davis, E. P., & Sandman, C. A. (2013). New insights into the role of perinatal HPA-axis dysregulation in postpartum depression. Neuropeptides, 47, 363370. doi:10.1016/j.npep.2013.10.007
Goodman, S. H., Rouse, M. H., Connell, A. M., Broth, M. R., Hall, C. M., & Heyward, D. (2011). Maternal depression and child psychopathology: A meta-analytic review. Clinical Child and Family Psychology Review, 14, 127. doi:10.1007/s10567-010-0080-1
Greally, J. M. (2018). A user's guide to the ambiguous word “epigenetics.” Nature Reviews Molecular Cell Biology, 19, 207208. doi:10.1038/nrm.2017.135
Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., … Lumey, L. H. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences, 105, 1704617049. doi:10.1073/pnas.0806560105
Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biological Psychiatry, 49, 10231039. doi:10.1016/S0006-3223(01)01157-X
Herman, J. P., & Spencer, R. (1998). Regulation of hippocampal glucocorticoid receptor gene transcription and protein expression in vivo. Journal of Neuroscience, 18, 74627473.
Houseman, E., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H., … Kelsey, K. T. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 13, 86. doi:10.1186/1471-2105-13-86
Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., … Morgan, M. (2015). Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods, 12, 115121. doi:10.1038/nmeth.3252
Ishimoto, H., & Jaffe, R. B. (2011). Development and function of the human fetal adrenal cortex: A key component in the feto-placental unit. Endocrine Reviews, 32, 317355. doi:10.1210/er.2010-0001
Jones, P. A. (2012). Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nature Reviews Genetics, 13, 484492. doi:10.1038/nrg3230
Kasckow, J. W., Baker, D., & Geracioti, T. D. (2001). Corticotropin-releasing hormone in depression and post-traumatic stress disorder. Peptides, 22, 845851. doi:10.1016/S0196-9781(01)00399-0
Keating, D. P. (2016). Transformative role of epigenetics in child development research: Commentary on the Special Section. Child Development, 87, 135142. doi:10.1111/cdev.12488
Kinsella, M. T., & Monk, C. (2009). Impact of maternal stress, depression and anxiety on fetal neurobehavioral development. Clinical Obstetrics and Gynecology, 52, 425440. doi:10.1097/GRF.0b013e3181b52df1
Labonté, B., Suderman, M., Maussion, G., Lopez, J. P., Navarro-Sánchez, L., Yerko, V., … Turecki, G. (2013). Genome-wide methylation changes in the brains of suicide completers. American Journal of Psychiatry, 170, 511520. doi:10.1176/appi.ajp.2012.12050627
Labonté, B., Suderman, M., Maussion, G., Navaro, L., Yerko, V., Mahar, I., … Turecki, G. (2012). Genome-wide epigenetic regulation by early-life trauma. Archives of General Psychiatry, 69. doi:10.1001/archgenpsychiatry.2011.2287
Lappalainen, T., & Greally, J. M. (2017). Associating cellular epigenetic models with human phenotypes. Nature Reviews Genetics, 18, 441451. doi:10.1038/nrg.2017.32
Lester, B. M., Conradt, E., & Marsit, C. (2016). Introduction to the Special Section on epigenetics. Child Development, 87, 2937. doi:10.1111/cdev.12489
Maccani, J. Z. J., Koestler, D. C., Lester, B., Houseman, E. A., Armstrong, D. A., Kelsey, K. T., & Marsit, C. J. (2015). Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environmental Health Perspectives, 123, 723729. doi:10.1289/ehp.1408561
Maccari, S., Krugers, H. J., Morley-Fletcher, S., Szyf, M., & Brunton, P. J. (2014). The consequences of early-life adversity: Neurobiological, behavioural and epigenetic adaptations. Journal of Neuroendocrinology, 26, 707723. doi:10.1111/jne.12175
Mansell, T., Vuillermin, P., Ponsonby, A.-L., Collier, F., Saffery, R., Barwon Infant Study Investigator Team, & Ryan, J. (2016). Maternal mental well-being during pregnancy and glucocorticoid receptor gene promoter methylation in the neonate. Development and Psychopathology, 28(4, pt. 2), 14211430. doi:10.1017/S0954579416000183
Marsit, C. J., Maccani, M. A., Padbury, J. F., & Lester, B. M. (2012). Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLOS, 1, e33794. doi:10.1371/journal.pone.0033794
McCarthy, M. I., Abecasis, G. R., Cardon, L. R., Goldstein, D. B., Little, J., Ioannidis, J. P. A., & Hirschhorn, J. N. (2008). Genome-wide association studies for complex traits: Consensus, uncertainty and challenges. Nature Reviews Genetics, 9, 356369. doi:10.1038/nrg2344
McGowan, P. O., Sasaki, A., D'Alessio, A. C., Dymov, S., Labonté, B., Szyf, M., … Meaney, M. J. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348. doi:10.1038/nn.2270
Meaney, M. J. (2010). Epigenetics and the biological definition of gene × environment interactions. Child Development, 81, 4179.
Monk, C., Feng, T., Lee, S., Krupska, I., Champagne, F. A., & Tycko, B. (2016). Distress during pregnancy: Epigenetic regulation of placenta glucocorticoid-related genes and fetal neurobehavior. American Journal of Psychiatry, 173, 705713. doi:10.1176/appi.ajp.2015.15091171
Monk, C., Spicer, J., & Champagne, F. A. (2012). Linking prenatal maternal adversity to developmental outcomes in infants: The role of epigenetic pathways. Development and Psychopathology, 24, 13611376. doi:10.1017/S0954579412000764
Murphy, S. E., Braithwaite, E. C., Hubbard, I., Williams, K. V., Tindall, E., Holmes, E. A., & Ramchandani, P. G. (2015). Salivary cortisol response to infant distress in pregnant women with depressive symptoms. Archives of Women's Mental Health, 18, 247253. doi:10.1007/s00737-014-0473-0
Nagy, C., Suderman, M., Yang, J., Szyf, M., Mechawar, N., Ernst, C., & Turecki, G. (2015). Astrocytic abnormalities and global DNA methylation patterns in depression and suicide. Molecular Psychiatry, 20, 320328. doi:10.1038/mp.2014.21
Nigg, J. T. (2016). Where do epigenetics and developmental origins take the field of developmental psychopathology? Journal of Abnormal Child Psychology, 44, 405419. doi:10.1007/s10802-015-0121-9
Painter, R. C., Westendorp, R. G. J., de Rooij, S. R., Osmond, C., Barker, D. J. P., & Roseboom, T. J. (2008). Increased reproductive success of women after prenatal undernutrition. Human Reproduction, 23, 25912595. doi:10.1093/humrep/den274
Paquette, A. G., Houseman, E. A., Green, B. B., Lesseur, C., Armstrong, D. A., Lester, B., & Marsit, C. J. (2016). Regions of variable DNA methylation in human placenta associated with newborn neurobehavior. Epigenetics, 11, 603613. doi:10.1080/15592294.2016.1195534
Paquette, A. G., Lester, B. M., Lesseur, C., Armstrong, D. A., Guerin, D. J., Appleton, A. A., & Marsit, C. J. (2015). Placental epigenetic patterning of glucocorticoid response genes is associated with infant neurodevelopment. Epigenomics, 7, 767779. doi:10.2217/epi.15.28
Salm, A. K., Pavelko, M., Krouse, E. M., Webster, W., Kraszpulski, M., & Birkle, D. L. (2004). Lateral amygdaloid nucleus expansion in adult rats is associated with exposure to prenatal stress. Developmental Brain Research, 148, 159167. doi:10.1016/j.devbrainres.2003.11.005
Sandman, C. A., & Davis, E. P. (2012). Neurobehavioral risk is associated with gestational exposure to stress hormones. Expert Review of Endocrinology and Metabolism, 7, 445459. doi:10.1586/eem.12.33
Sandman, C. A., Glynn, L. M., & Davis, E. P. (2016). Neurobehavioral consequences of fetal exposure to gestational stress. In Reissland, N. & Kisilevsky, B. S. (Eds.), Fetal development (pp. 229265). London: Springer.
Sirianni, R., Rehman, K. S., Carr, B. R., Parker, C. R., & Rainey, W. E. (2005). Corticotropin-releasing hormone directly stimulates cortisol and the cortisol biosynthetic pathway in human fetal adrenal cells. Journal of Clinical Endocrinology and Metabolism, 90, 279285. doi:10.1210/jc.2004-0865
Stroud, L. R., Papandonatos, G. D., Salisbury, A. L., Phipps, M. G., Huestis, M. A., Niaura, R., … Lester, B.M. (2016). Epigenetic regulation of placental NR3c1: Mechanism underlying prenatal programming of infant neurobehavior by maternal smoking? Child Development, 87, 4960. doi:10.1111/cdev.12482
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., … Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102, 1554515550. doi:10.1073/pnas.0506580102
Swedish Schizophrenia Consortium, McClay, J. L., Shabalin, A. A., Dozmorov, M. G., Adkins, D. E., Kumar, G., … van den Oord, E. J. C. G. (2015). High density methylation QTL analysis in human blood via next-generation sequencing of the methylated genomic DNA fraction. Genome Biology, 16. doi:10.1186/s13059-015-0842-7
Szyf, M. (2012). How do environments talk to genes? Nature Neuroscience, 16, 24. doi:10.1038/nn.3286
Tobi, E. W., Lumey, L. H., Talens, R. P., Kremer, D., Putter, H., Stein, A. D., … Heijmans, B. T. (2009). DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Human Molecular Genetics, 18, 40464053. doi:10.1093/hmg/ddp353
Tsai, P.-C., & Bell, J. T. (2015). Power and sample size estimation for epigenome-wide association scans to detect differential DNA methylation. International Journal of Epidemiology, 44, 14291441. doi:10.1093/ije/dyv041
Turecki, G., & Meaney, M. J. (2016). Effects of the social environment and stress on glucocorticoid receptor gene methylation: A systematic review. Biological Psychiatry, 79, 8796. doi:10.1016/j.biopsych.2014.11.022
Weaver, I. C. G., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., … Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854. doi:10.1038/nn1276
Weder, N., Zhang, H., Jensen, K., Yang, B. Z., Simen, A., Jackowski, A., … Kaufman, J. (2014). Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. Journal of the American Academy of Child & Adolescent Psychiatry, 53, 417424. doi:10.1016/j.jaac.2013.12.025
Zhu, M., & Zhao, S. (2007). Candidate gene identification approach: Progress and challenges. International Journal of Biological Sciences, 3, 420427.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Development and Psychopathology
  • ISSN: 0954-5794
  • EISSN: 1469-2198
  • URL: /core/journals/development-and-psychopathology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed