Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-01T19:27:10.371Z Has data issue: false hasContentIssue false

Developmental perspectives on the origins of psychotic disorders: The need for a transdiagnostic approach

Published online by Cambridge University Press:  26 February 2024

Elaine F. Walker*
Affiliation:
Department of Psychology, Emory University, Atlanta, GA, USA
Katrina Aberizk
Affiliation:
Department of Psychology, Emory University, Atlanta, GA, USA
Emerald Yuan
Affiliation:
Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
Zarina Bilgrami
Affiliation:
Department of Psychology, Emory University, Atlanta, GA, USA
Benson S. Ku
Affiliation:
Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
Ryan M. Guest
Affiliation:
Department of Psychology, Emory University, Atlanta, GA, USA
*
Corresponding author: E. F. Walker; Email: psyefw@emory.edu

Abstract

Research on serious mental disorders, particularly psychosis, has revealed highly variable symptom profiles and developmental trajectories prior to illness-onset. As Dante Cicchetti pointed out decades before the term “transdiagnostic” was widely used, the pathways to psychopathology emerge in a system involving equifinality and multifinality. Like most other psychological disorders, psychosis is associated with multiple domains of risk factors, both genetic and environmental, and there are many transdiagnostic developmental pathways that can lead to psychotic syndromes. In this article, we discuss our current understanding of heterogeneity in the etiology of psychosis and its implications for approaches to conceptualizing etiology and research. We highlight the need for examining risk factors at multiple levels and to increase the emphasis on transdiagnostic developmental trajectories as a key variable associated with etiologic subtypes. This will be increasingly feasible now that large, longitudinal datasets are becoming available and researchers have access to more sophisticated analytic tools, such as machine learning, which can identify more homogenous subtypes with the ultimate goal of enhancing options for treatment and preventive intervention.

Type
Special Issue Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdellaoui, A., & Verweij, K. J. H. (2021). Dissecting polygenic signals from genome-wide association studies on human behavior. Nature Human Behaviour, 5(6), 686694. https://doi.org/10.1038/s41562-021-01110-y CrossRefGoogle Scholar
Aberizk, K., Addington, J. M., Bearden, C. E., Cadenhead, K. S., Cannon, T. D., Cornblatt, B. A., Keshavan, M., Mathalon, D. H., Perkins, D. O., Stone, W. S., Tsuang, M. T., Woods, S. W., Walker, E. F., & Ku, B. S. (2024). Relations of lifetime perceived stress and basal cortisol with hippocampal volume among healthy adolescents and those at clinical high-risk for psychosis: A structural equation modeling approach. Biological Psychiatry. https://doi.org/10.1016/j.biopsych.2023.11.027 Google Scholar
Aberizk, K., Collins, M. A., Addington, J., Bearden, C. E., Cadenhead, K. S., Cornblatt, B. A., Mathalon, D. H., McGlashan, T. H., Perkins, D. O., Tsuang, M. T., Woods, S. W., Cannon, T. D., & Walker, E. F. (2022). Life event stress and reduced cortical thickness in youth at clinical high risk for psychosis and healthy control subjects. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(2), 171179.Google ScholarPubMed
Allardyce, J., & Boydell, J. (2006). Review: The wider social environment and schizophrenia. Schizophrenia Bulletin, 32(4), 592598.CrossRefGoogle ScholarPubMed
Allen, P., Baldwin, H., Bartholomeusz, C. F., Chee, M. W., Chen, X., Cooper, R. E., De Haan, L., Hamilton, H. K., He, Y., Hegelstad, W. T. V., Horton, L. E., Hubl, D., Klaunig, M. J., Koppel, A., Kwak, Y. B., León-Ortiz, P., Loewy, R. L., McGorry, P., & Frangou, S. (2024). Normative modeling of brain morphometry in clinical high risk for psychosis. JAMA Psychiatry, 81(1), 77. http://doi:10.1001/jamapsychiatry.2023.3850 Google Scholar
Allswede, D. M., Addington, J., Bearden, C. E., Cadenhead, K. S., Cornblatt, B. A., Mathalon, D. H., McGlashan, T., Perkins, D. O., Seidman, L. J., Tsuang, M. T., Walker, E. F., Woods, S. W., & Cannon, T. D. (2020). Characterizing covariant trajectories of individuals at clinical high risk for psychosis across symptomatic and functional domains. The American Journal of Psychiatry, 177(2), 164171.CrossRefGoogle ScholarPubMed
Alnæs, D., Kaufmann, T., van der Meer, D., Córdova-Palomera, A., Rokicki, J., Moberget, T., Bettella, F., Agartz, I., Barch, D. M., Bertolino, A., Brandt, C. L., Cervenka, S., Djurovic, S., Doan, N. T., Eisenacher, S., Fatouros-Bergman, H., Flyckt, L., Di Giorgio, A., Haatveit, B., Jönsson, E. G., … Karolinska Schizophrenia Project Consortium (2019). Brain heterogeneity in schizophrenia and its association with polygenic risk. JAMA Psychiatry, 76(7), 739748.CrossRefGoogle ScholarPubMed
American Psychiatric Association (2022). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Publishing.Google Scholar
Anglin, D. M., Ereshefsky, S., Klaunig, M. J., Bridgwater, M. A., Niendam, T. A., Ellman, L. M., Devylder, J., Thayer, G., Bolden, K., Musket, C. W., Grattan, R. E., Lincoln, S. H., Schiffman, J., Lipner, E., Bachman, P., Corcoran, C. M., Mota, N. B., & Van Der Ven, E. (2021). From womb to neighborhood: A racial analysis of social determinants of psychosis in the United States. The American Journal of Psychiatry, 178(7), 599610.CrossRefGoogle ScholarPubMed
Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353364.CrossRefGoogle ScholarPubMed
Bechter, K. (2023). Development of neuropsychiatry over the last 30 years and the new era of immuno-psychiatry. Journal of Affective Disorders Reports, 14, 100656. http://doi:10.1016/j.jadr.2023.100656 CrossRefGoogle Scholar
Bedi, G., Carrillo, F., Cecchi, G. A., Slezak, D. F., Sigman, M., Mota, N. B., Ribeiro, S., Javitt, D. C., Copelli, M., & Corcoran, C. M. (2015). Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizophrenia, 1(1), 15030. https://doi.org/10.1038/npjschz.2015.30 CrossRefGoogle ScholarPubMed
Benes, F., & Berreta, S. (2001). GABAergic interneurons implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology, 25(1), 127.CrossRefGoogle ScholarPubMed
Besterman, A. D. (2023). A genetics-guided approach to the clinical management of schizophrenia. Schizophrenia Research. Advance online publication. https://doi.org/10.1016/j.schres.2023.09.042 CrossRefGoogle Scholar
Buckner, R. L., & DiNicola, L. M. (2019). The brain’s default network: Updated anatomy, physiology and evolving insights. Nature Reviews Neuroscience, 20(10), 593608.CrossRefGoogle ScholarPubMed
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186198.CrossRefGoogle ScholarPubMed
Caballero, N., Machiraju, S., Diomino, A., Kennedy, L., Kadivar, A., & Cadenhead, K. S. (2023). Recent updates on predicting conversion in youth at clinical high risk for psychosis. Current Psychiatry Reports, 25(11), 683698.CrossRefGoogle ScholarPubMed
Cannon, T. D., Chung, Y., He, G., Sun, D., Jacobson, A., Van Erp, T. G. M., McEwen, S., Addington, J., Bearden, C. E., Cadenhead, K., Cornblatt, B., Mathalon, D. H., McGlashan, T., Perkins, D., Jeffries, C., Seidman, L. J., Tsuang, M., Walker, E., Woods, S. W., & Heinssen, R. (2015). Progressive reduction in cortical thickness as psychosis develops: A multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biological Psychiatry, 77(2), 147157.CrossRefGoogle ScholarPubMed
Cao, H., Chung, Y., McEwen, S. C., Bearden, C. E., Addington, J., Goodyear, B., Cadenhead, K. S., Mirzakhanian, H., Cornblatt, B. A., Carrión, R., Mathalon, D. H., McGlashan, T. H., Perkins, D. O., Belger, A., Seidman, L. J., Thermenos, H., Tsuang, M. T., van Erp, T. G. M., Walker, E. F., Hamann, S., … Cannon, T. D. (2020). Progressive reconfiguration of resting-state brain networks as psychosis develops: Preliminary results from the north American prodrome longitudinal study (NAPLS) consortium. Schizophrenia Research, 226(30-37), 3037.CrossRefGoogle ScholarPubMed
Cao, H., McEwen, S. C., Forsyth, J. K., Gee, D. G., Bearden, C. E., Addington, J., Goodyear, B., Cadenhead, K. S., Mirzakhanian, H., Cornblatt, B. A., Carrión, R. E., Mathalon, D. H., McGlashan, T. H., Perkins, D. O., Belger, A., Seidman, L. J., Thermenos, H., Tsuang, M. T., van Erp, T. G. M., Walker, E. F., … Cannon, T. D. (2019). Toward leveraging human connectomic data in large consortia: Generalizability of fMRI-based brain graphs across sites, sessions, and paradigms. Cerebral Cortex, 29(3), 12631279.CrossRefGoogle ScholarPubMed
Černis, E., Vassos, E., Brébion, G., McKenna, P. J., Murray, R. M., David, A. S., & MacCabe, J. H. (2015). Schizophrenia patients with high intelligence: A clinically distinct sub-type of schizophrenia? European Psychiatry, 30(5), 628632.CrossRefGoogle ScholarPubMed
Cheng, W., Frei, O., Van Der Meer, D., Wang, Y., O’Connell, K. S., Chu, Y., Bahrami, S., Shadrin, A. A., Alnæs, D., Hindley, G. F. L., Lin, A., Karadag, N., Fan, C.-C., Westlye, L. T., Kaufmann, T., Molden, E., Dale, A. M., Djurovic, S., Smeland, O. B., & Andreassen, O. A. (2021). Genetic association between schizophrenia and cortical brain surface area and thickness. JAMA Psychiatry, 78(9), 10201030, 1020.CrossRefGoogle ScholarPubMed
Chiang, J. J., Lam, P. H., Chen, E., & Miller, G. E. (2022). Psychological stress during childhood and adolescence and its association with inflammation across the lifespan: A critical review and meta-analysis. Psychological Bulletin, 148(1-2), 2766. http://doi:10.1037/bul0000351 CrossRefGoogle Scholar
Chithiramohan, T., Parekh, J. N., Kronenberg, G., Haunton, V. J., Minhas, J. S., Panerai, R. B., Robinson, T. G., Divall, P., Subramaniam, H., Mukaetova-Ladinska, E., & Beishon, L. (2022). Investigating the association between depression and cerebral haemodynamics—A systematic review and meta-analysis. Journal of Affective Disorders, 299, 144158. https://doi.org/10.1016/j.jad.2021.11.037 CrossRefGoogle ScholarPubMed
Chou, I. J., Kuo, C.-F., Huang, Y.-S., Grainge, M. J., Valdes, A. M., See, L.-C., Yu, K.-H., Luo, S.-F., Huang, L.-S., Tseng, W.-Y., Zhang, W., & Doherty, M. (2017). Familial aggregation and heritability of schizophrenia and co-aggregation of psychiatric illnesses in affected families. Schizophrenia Bulletin, 43(5), 10701078.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8(4), 597600. http://doi:10.1017/S0954579400007318 CrossRefGoogle Scholar
Cohen, S., Murphy, M. L. M., & Prather, A. A. (2019). Ten surprising facts about stressful life events and disease risk. Annual Reviews Psychology, 70(1), 577597. https://doi.org/10.1146/annurev-psych-010418-102857 CrossRefGoogle ScholarPubMed
Collins, M. A., Ji, J. L., Chung, Y., Lympus, C. A., Afriyie-Agyemang, Y., Addington, J. M., Goodyear, B. G., Bearden, C. E., Cadenhead, K. S., Mirzakhanian, H., Tsuang, M. T., Cornblatt, B. A., Carrión, R. E., Keshavan, M., Stone, W. S., Mathalon, D. H., Perkins, D. O., Walker, E. F., Woods, S. W., Powers, A. R., … Cannon, T. D. (2023). Accelerated cortical thinning precedes and predicts conversion to psychosis: The NAPLS3 longitudinal study of youth at clinical high-risk. Molecular Psychiatry, 28(3), 11821189.CrossRefGoogle ScholarPubMed
Comer, A. L., Carrier, M., Tremblay, M.-È., & Cruz-Martín, A. (2020). The inflamed brain in schizophrenia: The convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation. Frontiers in Cellular Neuroscience, 14, 274.CrossRefGoogle ScholarPubMed
Cullen, A. E., Addington, J., Bearden, C. E., Stone, W. S., Seidman, L. J., Cadenhead, K. S., Cannon, T. D., Cornblatt, B. A., Mathalon, D. H., McGlashan, T. H., Perkins, D. O., Tsuang, M. T., Woods, S. W., & Walker, E. F. (2020). Stressor-cortisol concordance among individuals at clinical high-risk for psychosis: Novel findings from the NAPLS cohort. Psychoneuroendocrinology, 115, 104649.CrossRefGoogle ScholarPubMed
Davies, C., Segre, G., Estradé, Aés, Radua, J., De Micheli, A., Provenzani, U., Oliver, D., Salazar de Pablo, G., Ramella-Cravaro, V., Besozzi, M., Dazzan, P., Miele, M., Caputo, G., Spallarossa, C., Crossland, G., Ilyas, A., Spada, G., Politi, P., Murray, R. M., McGuire, P., … Fusar-Poli, P. (2020). Prenatal and perinatal risk and protective factors for psychosis: A systematic review and meta-analysis. The Lancet Psychiatry, 7(5), 399410. https://doi.org/10.1016/S2215-0366(20)30057-2 CrossRefGoogle ScholarPubMed
De Bartolomeis, A., Barone, A., Vellucci, L., Mazza, B., Austin, M. C., Iasevoli, F., & Ciccarelli, M. (2022). Linking inflammation, aberrant glutamate-dopamine interaction, and post-synaptic changes: Translational relevance for schizophrenia and antipsychotic treatment: A systematic review. Molecular Neurobiology, 59(10), 64606501.CrossRefGoogle ScholarPubMed
Debbané, M., Eliez, S., Badoud, D., Conus, P., Flückiger, R., & Schultze-Lutter, F. (2015). Developing psychosis and its risk states through the lens of schizotypy. Schizophrenia Bulletin, S41(Suppl 2), S396407. http://doi:10.1093/schbul/sbu176 CrossRefGoogle Scholar
Dietz, A. G., Goldman, S. A., & Nedergaard, M. (2020). Glial cells in schizophrenia: A unified hypothesis. The Lancet Psychiatry, 7(3), 272281.CrossRefGoogle ScholarPubMed
Egerton, A., Modinos, G., Ferrera, D., & McGuire, P. (2017). Neuroimaging studies of GABA in schizophrenia: A systematic review with meta-analysis. Translational Psychiatry, 7(6), e1147e1147.CrossRefGoogle ScholarPubMed
Enrico, P., Delvecchio, G., Turtulici, N., Aronica, R., Pigoni, A., Squarcina, L., Villa, F. M., Perlini, C., Rossetti, M. G., Bellani, M., Lasalvia, A., Bonetto, C., Scocco, P., D’Agostino, A., Torresani, S., Imbesi, M., Bellini, F., Veronese, A., Bocchio-Chiavetto, L., Gennarelli, M., … GET UP Group (2023). A machine learning approach on whole blood immunomarkers to identify an inflammation-associated psychosis onset subgroup. Molecular Psychiatry, 28(3), 11901200.CrossRefGoogle ScholarPubMed
Faris, R. E. L., & Dunham, H. W. (1939). Mental disorders in urban areas: An ecological study of schizophrenia and other psychoses. Univ. Chicago Press.Google Scholar
Ferraro, L., Quattrone, D., La Barbera, D., La Cascia, C., Morgan, C., Kirkbride, J. B., Cardno, A. G., Sham, P., Tripoli, G., Sideli, L., Seminerio, F., Sartorio, C., Szoke, A., Tarricone, I., Bernardo, M., Rodriguez, V., Stilo, S. A., Gayer-Anderson, C., De Haan, L., Velthorst, E., … WP2 EU-GEI Group (2023). First-episode psychosis patients who deteriorated in the premorbid period do not have higher polygenic risk scores than others: A cluster analysis of EU-GEI data. Schizophrenia Bulletin, 49(1), 218227. http://doi:10.1093/schbul/sbac100 CrossRefGoogle Scholar
Fiksinski, A. M., Hoftman, G. D., Vorstman, J. A. S., & Bearden, C. E. (2023). A genetics-first approach to understanding autism and schizophrenia spectrum disorders: The 22q11.2 deletion syndrome. Molecular Psychiatry, 28(1), 341353.CrossRefGoogle ScholarPubMed
Fiksinski, A. M., Schneider, M., Zinkstok, J., Baribeau, D., Chawner, S. J. R. A., & Vorstman, J. A. S. (2021). Neurodevelopmental trajectories and psychiatric morbidity: Lessons learned from the 22q11.2 deletion syndrome. Current Psychiatry Reports, 23(3), 13.CrossRefGoogle ScholarPubMed
Foss-Feig, J. H., Velthorst, E., Smith, L., Reichenberg, A., Addington, J., Cadenhead, K. S., Cornblatt, B. A., Mathalon, D. H., McGlashan, T. H., Perkins, D. O., Seidman, L. J., Stone, W. S., Keshavan, M., Tsuang, M. T., Walker, E. F., Woods, S. W., Cannon, T. D., & Bearden, C. E. (2019). Clinical profiles and conversion rates among youth individuals with autism spectrum disorder who present to clinical high risk for psychosis services. Journal of the American Academy of Child and Adolescent Psychiatry, 58(6), 582588. https://doi.org/10.1016/j.jaac.2018.09.446 CrossRefGoogle ScholarPubMed
Gandal, M. J., Haney, J. R., Parikshak, N. N., Leppa, V., Ramaswami, G., Hartl, C., Schork, A. J., Appadurai, V., Buil, A., Werge, T. M., Liu, C., White, K. P., & Consortium, C., 2018). Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science, 9(359), 693697. https://doi/10.1126/science.aad6469 CrossRefGoogle Scholar
Glausier, J. R., & Lewis, D. A. (2017). GABA and schizophrenia: Where we stand and where we need to go. Schizophrenia Research, 181, 23.CrossRefGoogle ScholarPubMed
Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., & Beaulieu, C. (2009). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19(3), 524536.CrossRefGoogle ScholarPubMed
Gutman, B. A., van Erp, T. G. M., Alpert, K., Ching, C. R. K., Isaev, D., Ragothaman, A., Jahanshad, N., Saremi, A., Zavaliangos-Petropulu, A., Glahn, D. C., Shen, L., Cong, S., Alnaes, D., Andreassen, O. A., Doan, N. T., Westlye, L. T., Kochunov, P., Satterthwaite, T. D., Wolf, D. H., Huang, A. J., … Wang, L. (2022). A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA consortium. Human Brain Mapping, 43(1), 352372. http://doi:10.1002/hbm.25625 CrossRefGoogle Scholar
Haddad, L., Schäfer, A., Streit, F., Lederbogen, F., Grimm, O., Wüst, S., Deuschle, M., Kirsch, P., Tost, H., & Meyer-Lindenberg, A. (2015). Brain structure correlates of urban upbringing, an environmental risk factor for schizophrenia. Schizophrenia Bulletin, 41(1), 115122.CrossRefGoogle ScholarPubMed
Hinterbuchinger, B., & Mossaheb, N. (2021). Psychotic-like experiences: A challenge in definition and assessment. Frontiers in Psychiatry, 12, 582392.CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748751. http://doi:10.1176/appi.ajp.2010.09091379 CrossRefGoogle Scholar
Izquierdo, A., Cabello, M. D., Leal, I., Torio, I., Madrigal, J. L. M., MacDowell, K. S., Rodriguez-Jimenez, R., Rentero, D., Ibáñez, Á., Ayora, M., Díaz-Caneja, C. M., Abregú-Crespo, R., Mellor-Marsá, B., Díaz-Marsá, M., Malpica, N., Bravo-Ortiz, M. D. F., Baca-García, E., Arango, C., Ayuso-Mateos, J. L., & Group, A. G. E. S..-C. M (2023). Neighborhood vulnerability and disability in first episode of psychosis: A multilevel study. The Journal of Clinical Psychiatry, 84(2), 22m14401. https://doi.org/10.4088/JCP.22m14401 CrossRefGoogle ScholarPubMed
Jutla, A., Foss-Feig, J., & Veenstra-VanderWeele, J. (2022). Autism spectrum disorder and schizophrenia: An updated conceptual review. Autism Research, 15(3), 384412,.CrossRefGoogle ScholarPubMed
Karcher, N. R., Paul, S. E., Johnson, E. C., Hatoum, A. S., Baranger, D. A. A., Agrawal, A., Thompson, W. K., Barch, D. M., & Bogdan, R. (2022). Psychotic-like experiences and polygenic liability in the adolescent brain cognitive development study. Biol Psychiatry Cognitive Neuroscience Neuroimaging, 7(1), 4555. http://doi:10.1016/j.bpsc.2021.06.012 CrossRefGoogle ScholarPubMed
Kato, H., Kimura, H., Kushima, I., Takahashi, N., Aleksic, B., & Ozaki, N. (2023). The genetic architecture of schizophrenia: Review of large-scale genetic studies. Journal of Human Genetics, 68(3), 175182.CrossRefGoogle ScholarPubMed
Khan, A. R., Geiger, L., Wiborg, O., & Czéh, B. (2020). Stress-induced morphological, cellular and molecular changes in the brain—lessons learned from the chronic mild stress model of depression. Cells, 9(4), 1026. https://doi.org/10.3390/cells9041026 CrossRefGoogle ScholarPubMed
Kline, E. R., Seidman, L. J., Cornblatt, B. A., Woodberry, K. A., Bryant, C., Bearden, C. E., Cadenhead, K. S., Cannon, T. D., Mathalon, D. H., McGlashan, T. H., Perkins, D. O., Tsuang, M. T., Walker, E. F., Woods, S. W., & Addington, J. (2018). Depression and clinical high-risk states: Baseline presentation of depressed vs. non-depressed participants in the NAPLS-2 cohort. Schizophrenia Research, 192, 357363.CrossRefGoogle ScholarPubMed
Knight, S., McCutcheon, R., Dwir, D., Grace, A. A., O’Daly, O., McGuire, P., & Modinos, G. (2022). Hippocampal circuit dysfunction in psychosis. Translational Psychiatry, 12(1), 344.CrossRefGoogle ScholarPubMed
Koen, J. D., Lewis, L., Rugg, M. D., Clementz, B. A., Keshavan, M. S., Pearlson, G. D., Sweeney, J. A., Tamminga, C. A., & Ivleva, E. I. (2023). Supervised machine learning classification of psychosis biotypes based on brain structure: Findings from the bipolar-schizophrenia network for intermediate phenotypes (B-SNIP). Science Reports, 13(1), 12980. http://doi:10.1038/s41598-023-38101-0 CrossRefGoogle Scholar
Konradi, C., Yang, C. K., Zimmerman, E. I., Lohmann, K. M., Gresch, P., Pantazopoulos, H., Berretta, S., & Heckers, S. (2011). Hippocampal interneurons are abnormal in schizophrenia. Schizophrenia Research, 131(1-3), 165173.CrossRefGoogle ScholarPubMed
Koutsouleris, N., Dwyer, D. B., Degenhardt, F., Maj, C., Urquijo-Castro, M. F., Sanfelici, R., Popovic, D., Oeztuerk, O., Haas, S. S., Weiske, J., Ruef, A., Kambeitz-Ilankovic, L., Antonucci, L. A., Neufang, S., Schmidt-Kraepelin, C., Ruhrmann, S., Penzel, N., Kambeitz, J., Haidl, T. K., Rosen, M., … PRONIA Consortium (2021). Multimodal machine learning workflows for prediction of psychosis in patients with clinical high-risk syndromes and recent-onset depression. JAMA Psychiatry, 78(2), 195209.CrossRefGoogle ScholarPubMed
Ku, B. S., Aberizk, K., Addington, J., Bearden, C. E., Cadenhead, K. S., Cannon, T. D., Carrión, R. E., Compton, M. T., Cornblatt, B. A., Druss, B. G., Mathalon, D. H., Perkins, D. O., Tsuang, M. T., Woods, S. W., & Walker, E. F. (2022). The association between neighborhood poverty and hippocampal volume among individuals at clinical high-risk for psychosis: The moderating role of social engagement. Schizophrenia Bulletin, 48(5), 10321042.CrossRefGoogle ScholarPubMed
Ku, B. S., Addington, J., Bearden, C. E., Cadenhead, K. S., Cannon, T. D., Compton, M. T., Cornblatt, B. A., Druss, B. G., Guloksuz, S., Mathalon, D. H., Perkins, D. O., Tsuang, M. T., Walker, E. F., Woods, S. W., & Carrion, R. E. (2023). Associations between childhood area-level social fragmentation, maladaptation to school, and social functioning among healthy youth and those at clinical high risk for psychosis. Schizophrenia Bulletin, 49(6), 14371446.CrossRefGoogle ScholarPubMed
Ku, B. S., Addington, J., Bearden, C. E., Cadenhead, K. S., Cannon, T. D., Compton, M. T., Cornblatt, B. A., Druss, B. G., Keshavan, M., Mathalon, D. H., Perkins, D. O., Stone, W. S., Tsuang, M. T., Woods, S. W., & Walker, E. F. (2022). The associations between area-level residential instability and gray matter volumes from the north American prodrome longitudinal study (NAPLS) consortium. Schizophrenia Research, 241, 19. http://doi:10.1016/j.schres.2021.12.050 CrossRefGoogle ScholarPubMed
Ku, B. S., Addington, J., Bearden, C. E., Cadenhead, K. S., Cannon, T. D., Compton, M. T., Cornblatt, B. A., Keshavan, M., Mathalon, D. H., Perkins, D. O., Stone, W. S., Tsuang, M. T., Walker, E. F., Woods, S. W., & Druss, B. G. (2021b). Association between residential instability at individual and area levels and future psychosis in adolescents at clinical high risk from the north American prodrome longitudinal study (NAPLS) consortium. Schizophrenia Research, 238, 137144.CrossRefGoogle ScholarPubMed
Ku, B. S., Compton, M. T., Walker, E. F., & Druss, B. G. (2021a). Social fragmentation and schizophrenia: A systematic review. The Journal of Clinical Psychiatry, 83(1).CrossRefGoogle ScholarPubMed
Ku, B. S., Pauselli, L., Manseau, M., & Compton, M. T. (2020). Neighborhood-level predictors of age at onset and duration of untreated psychosis in first-episode psychotic disorders. Schizophrenia Research, 218, 247254.CrossRefGoogle ScholarPubMed
Ku, B. S., Walker, E. F., Druss, B. G., Murray, C. R., & Compton, M. T. (2023). Residential instability during adolescence predicts earlier age at onset of psychosis: The moderating role of extraversion. Early Intervention in Psychiatry, 17(5), 527531. http://doi:10.1111/eip.13375 CrossRefGoogle ScholarPubMed
Lalousis, P. A., Schmaal, L., Wood, S. J., Reniers, R. L. E. P., Cropley, V. L., Watson, A., Pantelis, C., Suckling, J., Barnes, N. M., Pariante, C., Jones, P. B., Joyce, E., Barnes, T. R. E., Lawrie, S. M., Husain, N., Dazzan, P., Deakin, B., Weickert, C. S., & Upthegrove, R. (2023). Inflammatory subgroups of schizophrenia and their association with brain structure: A semi-supervised machine learning examination of heterogeneity. Brain, Behavior, and Immunity, 113, 166175. https://doi.org/10.1016/j.bbi.2023.06.023 CrossRefGoogle Scholar
Lee, L., Harrison, L. M., & Mechelli, A. (2003). The functional brain connectivity workshop: Report and commentary. Network Computation in Neural Systems, 14(2), 115.CrossRefGoogle Scholar
Lindgren, M., Numminen, L., Holm, M., Therman, S., & Tuulio-Henriksson, A. (2022). Psychotic-like experiences of young adults in the general population predict mental disorders. Psychiatry Research, 312, 114543.CrossRefGoogle ScholarPubMed
Lv, J., Di Biase, M., Cash, R. F. H., Cocchi, L., Cropley, V. L., Klauser, P., Tian, Y., Bayer, J., Schmaal, L., Cetin-Karayumak, S., Rathi, Y., Pasternak, O., Bousman, C., Pantelis, C., Calamante, F., & Zalesky, A. (2021). Individual deviations from normative models of brain structure in a large cross-sectional schizophrenia cohort. Molecular Psychiatry, 26(7), 35123523. http://doi:10.1038/s41380-020-00882-5 CrossRefGoogle Scholar
March, D., Hatch, S. L., Morgan, C., Kirkbride, J. B., Bresnahan, M., Fearon, P., & Susser, E. (2008). Psychosis and place. Epidemiologic Reviews, 30, 84100.CrossRefGoogle ScholarPubMed
McGlashan, T., Walsh, B., & Woods, S. W. (2010). The psychosis-risk syndrome: Handbook for diagnosis and follow-up. Oxford University Press.Google Scholar
McGrath, T., Baskerville, R., Rogero, M., & Castell, L. (2022). Emerging evidence for the widespread role of glutamatergic dysfunction in neuropsychiatric diseases. Nutrients, 14(5), 917.CrossRefGoogle ScholarPubMed
Mensi, M. M., Molteni, S., Iorio, M., Filosi, E., Ballante, E., Balottin, U., Fusar-Poli, P., & Borgatti, R. (2021). Prognostic accuracy of DSM-5 attenuated psychosis syndrome in adolescents: Prospective real-world 5-year cohort study. Schizophrenia Bulletin, 47(6), 16631673.CrossRefGoogle ScholarPubMed
Merz, E. C., Desai, P. M., Maskus, E. A., Melvin, S. A., Rehman, R., Torres, S. D., Meyer, J., He, X., & Noble, K. G. (2019). Socioeconomic disparities in chronic physiologic stress are associated with brain structure in children. Biological Psychiatry, 86(12), 921929.CrossRefGoogle ScholarPubMed
Misiak, B., Pruessner, M., Samochowiec, J., Wiśniewski, M., Reginia, A., & Stańczykiewicz, B. (2021). A meta-analysis of blood and salivary cortisol levels in first-episode psychosis and high-risk individuals. Frontiers in Neuroendocrinology, 62, 100930.CrossRefGoogle ScholarPubMed
Modinos, G., Richter, A., Egerton, A., Bonoldi, I., Azis, M., Antoniades, M., Bossong, M., Crossley, N., Perez, J., Stone, J. M., Veronese, M., Zelaya, F., Grace, A. A., Howes, O. D., Allen, P., & McGuire, P. (2021). Interactions between hippocampal activity and striatal dopamine in people at clinical high risk for psychosis: Relationship to adverse outcomes. Neuropsychopharmacology, 46(8), 14681474.CrossRefGoogle ScholarPubMed
Mourao-Miranda, J., Reinders, A. A., Rocha-Rego, V., Lappin, J., Rondina, J., Morgan, C., Morgan, K. D., Fearon, P., Jones, P. B., Doody, G. A., Murray, R. M., Kapur, S., & Dazzan, P. (2012). Individualized prediction of illness course at the first psychotic episode: A support vector machine MRI study. Psychological Medicine, 42(5), 10371047.CrossRefGoogle ScholarPubMed
Mulle, J. G., Gambello, M. J., Russo, R. S., Murphy, M. M., Burrell, T. L., Klaiman, C., & Li, L. (2021). 3q29 recurrent deletion. In GeneReviews®[Internet]. University of Washington.Google Scholar
Niu, M., & Palomero-Gallagher, N. (2023). Architecture and connectivity of the human angular gyrus and of its homolog region in the macaque brain. Brain Structure and Function, 228(1), 4761.CrossRefGoogle ScholarPubMed
Nourredine, M., Gering, A., Fourneret, P., Rolland, B., Falissard, B., Cucherat, M., Geoffray, M., & Jurek, L. (2021). Association of attention-deficit/hyperactivity disorder in childhood and adolescence with the risk of subsequent psychotic disorder: A systematic review and meta-analysis. JAMA Psychiatry, 78(5), 519529.CrossRefGoogle ScholarPubMed
Olde Loohuis, L. M., Mennigen, E., Ori, A. P. S., Perkins, D., Robinson, E., Addington, J., Cadenhead, K. S., Cornblatt, B. A., Mathalon, D. H., McGlashan, T. H., Seidman, L. J., Keshavan, M. S., Stone, W. S., Tsuang, M. T., Walker, E. F., Woods, S. W., Cannon, T. D., Gur, R. C., Gur, R. E., Bearden, C. E., … Ophoff, R. A. (2021). Genetic and clinical analyses of psychosis spectrum symptoms in a large multiethnic youth cohort reveal significant link with ADHD. Translational Psychiatry, 11(1), 80. http://doi:10.1038/s41398-021-01203-2 CrossRefGoogle Scholar
Owen, M. J., Legge, S. E., Rees, E., Walters, J. T. R., & O’Donovan, M. C. (2023). Genomic findings in schizophrenia and their implications. Molecular Psychiatry, 28(9), 36383647. http://doi:10.1038/s41380-023-02293-8 CrossRefGoogle ScholarPubMed
Paksarian, D., Trabjerg, B. B., Merikangas, K. R., Mors, O., Børglum, A. D., Hougaard, D. M., Nordentoft, M., Werge, T., Pedersen, C. B., Mortensen, P. B., Agerbo, E., & Horsdal, H. T. (2020). Adolescent residential mobility, genetic liability and risk of schizophrenia, bipolar disorder and major depression. The British Journal of Psychiatry, 217(1), 390396.CrossRefGoogle ScholarPubMed
Pastore, A., De Girolamo, G., Tafuri, S., Tomasicchio, A., & Margari, F. (2022). Traumatic experiences in childhood and adolescence: A meta-analysis of prospective studies assessing risk for psychosis. European Child & Adolescent Psychiatry, 31(2), 215228. http://doi:10.1007/s00787-020-01574-9 CrossRefGoogle ScholarPubMed
Perkins, D. O., Jeffries, C. D., Addington, J., Bearden, C. E., Cadenhead, K. S., Cannon, T. D., Cornblatt, B. A., Mathalon, D. H., McGlashan, T. H., Seidman, L. J., Tsuang, M. T., Walker, E. F., Woods, S. W., & Heinssen, R. (2015). Towards a psychosis risk blood diagnostic for persons experiencing high-risk symptoms: Preliminary results rrom the NAPLS project. Schizophrenia Bulletin, 41(2), 419428. http://doi:10.1093/schbul/sbu099 CrossRefGoogle Scholar
Prévot, T., & Sibille, E. (2021). Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders. Molecular Psychiatry, 26(1), 151167.CrossRefGoogle ScholarPubMed
Price, C., Dalman, C., Zammit, S., & Kirkbride, J. B. (2018). Association of residential mobility over the life course with nonaffective psychosis in 1.4 million young people in Sweden. JAMA Psychiatry, 75(11), 11281136.CrossRefGoogle ScholarPubMed
Rezaii, N., Walker, E. F., & Wolff, P. (2019). A machine learning approach to predicting psychosis using semantic density and latent content analysis. NPJ Schizophrenia, 5(1), 9.CrossRefGoogle ScholarPubMed
Ristanovic, I., Vargas, T. G., Damme, K. S. F., & Mittal, V. A. (2023). Hippocampal subfields, daily stressors, and resting cortisol in individuals at clinical high-risk for psychosis. Psychoneuroendocrinology, 148, 105996.CrossRefGoogle ScholarPubMed
Rutkowski, T. P., Schroeder, J. P., Gafford, G. M., Warren, S. T., Weinshenker, D., Caspary, T., & Mulle, J. G. (2017). Unraveling the genetic architecture of copy number variants associated with schizophrenia and other neuropsychiatric disorders. Journal of Neuroscience Research, 95(5), 11441160.CrossRefGoogle ScholarPubMed
Schäfer, I., & Fisher, H. L. (2011). Childhood trauma and psychosis - what is the evidence? Dialogues in Clinical Neuroscience, 13(3), 360365.CrossRefGoogle ScholarPubMed
Schobel, S. A., Chaudhury, N. H., Khan, U. A., Paniagua, B., Styner, M. A., Asllani, I., Inbar, B. P., Corcoran, C. M., Lieberman, J. A., Moore, H., & Small, S. A. (2013). Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron, 78(1), 8193. http://doi:10.1016/j.neuron.2013.02.011 CrossRefGoogle Scholar
Schultze-Lutter, F., Renner, F., Paruch, J., Julkowski, D., Klosterkotter, J., & Ruhrmann, S. (2014). Self-reported psychotic-like experiences are a poor estimate of clinician-rated attenuated and frank delusions and hallucinations. Psychopathology, 47(3), 194201. http://doi:10.1159/000355554 CrossRefGoogle Scholar
Segal, A., Parkes, L., Aquino, K., Kia, S. M., Wolfers, T., Franke, B., Hoogman, M., Beckmann, C. F., Westlye, L. T., Andreassen, O. A., Zalesky, A., Harrison, B. J., Davey, C. G., Soriano-Mas, C., Cardoner, N. D.;s, Tiego, J., Yücel, M., Braganza, L., Suo, C., Berk, M., … Fornito, A. (2023). Regional, circuit and network heterogeneity of brain abnormalities in psychiatric disorders. Nature Neuroscience, 26(9), 16131629. https://doi.org/10.1038/s41593-023-01404-6 CrossRefGoogle ScholarPubMed
Singh, A. K., Olsen, M. F., Lavik, L. A. S., Vold, T., Drabløs, F., & Sjursen, W. (2021). Detecting copy number variation in next generation sequencing data from diagnostic gene panels. BMC Medical Genomics, 14(1), 214.CrossRefGoogle ScholarPubMed
Solmi, M., Radua, J., Olivola, M., Croce, E., Soardo, L., Salazar de Pablo, G., Il Shin, J., Kirkbride, J. B., Jones, P., Kim, J. H., Kim, J. Y., Carvalho, A. F., Seeman, M. V., Correll, C. U., & Fusar-Poli, P. (2022). Age at onset of mental disorders worldwide: Large-scale meta-analysis of 192 epidemiological studies. Molecular Psychiatry, 27(1), 281295.CrossRefGoogle ScholarPubMed
Sun, D., Phillips, L., Velakoulis, D., Yung, A., McGorry, P. D., Wood, S. J., Van Erp, T. G. M., Thompson, P. M., Toga, A. W., Cannon, T. D., & Pantelis, C. (2009). Progressive brain structural changes mapped as psychosis develops in at risk individuals. Schizophrenia Research, 108(1-3), 8592.CrossRefGoogle ScholarPubMed
Tandon, R., Nasrallah, H., Akbarian, S., Carpenter, W. T. Jr., DeLisi, L. E., Gaebel, W., Green, M. F., Gur, R. E., Heckers, S., Kane, J. M., Malaspina, D., Meyer-Lindenberg, A., Murray, R., Owen, M., Smoller, J. W., Yassine, W., & Keshavan, M. (2023). The schizophrenia syndrome, circa 2024: What we know and how that informs its nature. Schizophrenia Research, 264, 128.CrossRefGoogle ScholarPubMed
Taquet, M., Sillett, R., Zhu, L., Mendel, J., Camplisson, I., Dercon, Q., & Harrison, P. J. (2022). Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: An analysis of 2-year retrospective cohort studies including 1 284 437 patients. The Lancet Psychiatry, 9(10), 815827.CrossRefGoogle ScholarPubMed
Trotman, H. D., Holtzman, C. W., Walker, E. F., Addington, J. M., Bearden, C. E., Cadenhead, K. S., Cannon, T. D., Cornblatt, B. A., Heinssen, R. K., Mathalon, D. H., Tsuang, M. T., Perkins, D. O., Seidman, L. J., Woods, S. W., & McGlashan, T. H. (2014). Stress exposure and sensitivity in the clinical high-risk syndrome: Initial findings from the north American prodrome longitudinal study (NAPLS). Schizophrenia Research, 160(1-3), 104109.CrossRefGoogle ScholarPubMed
van Dongen, J., Odintsova, V. V., & Boomsma, D. I. (2021). Discordant monozygotic twin studies of epigenetic mechanisms in mental health. In Twin and family studies of epigenetics (pp. 4366). Academic Press.CrossRefGoogle Scholar
van Os, J., Linscott, R. J., Myin-Germeys, I., Delespaul, P., & Krabbendam, L. (2009). A systematic review and meta-analysis of the psychosis continuum: Evidence for a psychosis proneness-persistence–impairment model of psychotic disorder. Psychological Medicine, 39(2), 179195. https://doi.org/10.1017/S0033291708003814 CrossRefGoogle ScholarPubMed
van Os, J., & McGuffin, P. (2003). Can the social environment cause schizophrenia? British Journal of Psychiatry, 182(4), 291292. http://doi:10.1192/bjp.182.4.291 CrossRefGoogle ScholarPubMed
Van Os, J. (2013). The dynamics of subthreshold psychopathology: implications for diagnosis and treatment. American Journal of Psychiatry, 170(7), 695698.CrossRefGoogle ScholarPubMed
Vazquez, A. L., Fukuda, M., & Kim, S.-G. (2018). Inhibitory neuron activity contributions to hemodynamic responses and metabolic load examined using an inhibitory optogenetic mouse model. Cerebral Cortex, 28(11), 41054119.CrossRefGoogle ScholarPubMed
Walker, E. F., & Diforio, D. (1997). Schizophrenia: A neural diathesis-stress model. Psychology Reviews, 104(4), 667685.CrossRefGoogle ScholarPubMed
Walker, E. F., & Goldsmith, D. R. (2022). Schizophrenia: A scientific graveyard or a pragmatically useful diagnostic construct? Schizophrenia Research, 242, 141143.CrossRefGoogle ScholarPubMed
Walker, E. F., Mittal, V., & Tessner, K. (2008). Stress and the hypothalamic pituitary adrenal axis in the developmental course of schizophrenia. Annual Reviews Clinical Psychology, 4, 189216. http://doi:10.1146/annurev.clinpsy.4.022007.141248 CrossRefGoogle ScholarPubMed
Walker, E. F., Trotman, H. D., Goulding, S. M., Holtzman, C. W., Ryan, A. T., McDonald, A., Shapiro, D. I., & Brasfield, J. L. (2013). Developmental mechanisms in the prodrome to psychosis. Development and Psychopathology, 25(4pt2), 15851600.CrossRefGoogle ScholarPubMed
Woo, H. J., Yu, C., Kumar, K., & Reifman, J. (2017). Large-scale interaction effects reveal missing heritability in schizophrenia, bipolar disorder and posttraumatic stress disorder. Translational Psychiatry, 7(4), e1089e1089.CrossRefGoogle ScholarPubMed
Yue, W., Huang, H., & Duan, J. (2022). Potential diagnostic biomarkers for schizophrenia. Medical Review, 2(4), 385416.CrossRefGoogle ScholarPubMed