Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-lzpzj Total loading time: 0.335 Render date: 2021-03-02T08:20:47.705Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Environmental Heat Exposure and Heat-Related Symptoms in United States Coast Guard Deepwater Horizon Disaster Responders

Published online by Cambridge University Press:  06 November 2018

Elizabeth A. Erickson
Affiliation:
Department of Preventive Medicine and Biostatistics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
Lawrence S. Engel
Affiliation:
Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
Kate Christenbury
Affiliation:
Social & Scientific Systems, Durham, North Carolina
Laura Weems
Affiliation:
; Safety and Occupational Health Office, United StatesArmy Corps of Engineers, Little Rock, Arkansas
Erica G. Schwartz
Affiliation:
Directorate of Health, Safety and Work Life, United StatesCoast Guard, Washington, DC
Jennifer A. Rusiecki
Affiliation:
Department of Preventive Medicine and Biostatistics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
Corresponding

Abstract

Objectives

The response to the 2010 Deepwater Horizon oil spill was impacted by heat. We evaluated the association between environmental heat exposure and self-reported heat-related symptoms in US Coast Guard Deepwater Horizon disaster responders.

Methods

Utilizing climate data and postdeployment survey responses from 3648 responders, we assigned heat exposure categories based on both wet bulb globe temperature (WBGT) and heat index (HI) measurements (median, mean, maximum). We calculated prevalence ratios (PRs) and 95% confidence intervals (CIs) via adjusted Poisson regression models with robust error variance to estimate associations with reported heat-related symptoms. We also evaluated the association between use of personal protective equipment (PPE) and heat-related symptoms.

Results

Those in the highest WBGT median–based heat exposure category had increased prevalence of heat-related symptoms compared to those in the lowest category (PR=2.22 [95% CI: 1.61, 3.06]), and there was a significant exposure-response trend (P<.001). Results were similar for exposure categories based on WBGT and HI metrics. Analyses stratified by use of PPE found significantly stronger associations between environmental heat exposure and heat-related symptoms in those who did not use PPE (PR=2.23 [95% CI: 1.10, 4.51]) than in those who did (PR=1.64 [95% CI: 1.14, 2.36]).

Conclusions

US Coast Guard Deepwater Horizon disaster responders who experienced higher levels of environmental heat had higher prevalences of heat-related symptoms. These symptoms may impact health, safety, and mission effectiveness. As global climate change increases the frequency of disasters and weather extremes, actions must be taken to prevent heat-related health impacts among disaster responders. (Disaster Med Public Health Preparedness. 2019;13:561-569)

Type
Original Research
Copyright
Copyright © 2018 Society for Disaster Medicine and Public Health, Inc. 

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Arbury, S, Jacklitsch, B, Farquah, O, et al. Heat illness and death among workers - United States, 2012-2013. MMWR Morb Mortal Wkly Rep. 2014;63(31):661-665.Google ScholarPubMed
2. Gubernot, DM, Anderson, GB, Hunting, KL. The epidemiology of occupational heat exposure in the United States: a review of the literature and assessment of research needs in a changing climate. Int J Biometeorol. 2014;58(8):1779-1788.CrossRefGoogle Scholar
3. Gubernot, DM, Anderson, GB, Hunting, KL. Characterizing occupational heat‐related mortality in the United States, 2000–2010: an analysis using the census of fatal occupational injuries database. Am J Ind Med. 2015;58(2):203-211.CrossRefGoogle ScholarPubMed
4. Kjellstrom, T, Holmer, I, Lemke, B. Workplace heat stress, health and productivity - an increasing challenge for low and middle-income countries during climate change. Glob Health Action. 2009;2:46-51.CrossRefGoogle ScholarPubMed
5. Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: Alfred-Wegener-Institut; 2014.Google Scholar
6. US National Response Team, US Coast Guard. On Scene Coordinator Report: Deepwater Horizon Oil Spill. Washington, DC: US Department of Homeland Security; 2011.Google Scholar
7. National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling. Deep Water: The Gulf Oil Disaster and the Future of Offshore Drilling. https://nrt.org/sites/2/files/GPO-OILCOMMISSION.pdf. Published 2011. Accessed July 19, 2018.Google Scholar
8. National Oceanic and Atmospheric Administration National Centers for Environmental Information. State of the Climate: National Climate Report for Annual 2010. https://www.ncdc.noaa.gov/sotc/national/201013. Published 2011. Accessed June 4, 2017.Google Scholar
9. King, BS, Gibbins, JD. Health Hazard Evaluation of Deepwater Horizon Response Workers: HETA 2010-0115. Atlanta, GA: National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention; 2010.Google Scholar
10. Michaels, D, Howard, J. Review of the OSHA-NIOSH response to the Deepwater Horizon oil spill: protecting the health and safety of cleanup workers. PLoS Curr. 2012;4:e4fa83b7576b7576e.Google ScholarPubMed
11. Deepwater Horizon MC252 New Orleans, Louisiana Unified Area Command. Heat Stress Management Plan. https://static.compliancetrainingonline.com/docs/Heat_Stress_Management_Plan.pdf. Published June 8, 2010. Accessed June 14, 2017.Google Scholar
12. Epstein, Y, Druyan, A, Heled, Y. Heat injury prevention—a military perspective. J Strength Cond Res. 2012;26(suppl 2):S82-S86.CrossRefGoogle ScholarPubMed
13. National Institute for Occupational Safety and Health (NIOSH). NIOSH Criteria for a Recommended Standard: Occupational Exposure to Heat and Hot Environments. Cincinnati, OH: US Department of Health and Human Services, Center for Disease Control and Prevention, National Institute for Occupational Safety and Health; 2016.Google Scholar
14. Casa, DJ, Armstrong, LE, Kenny, GP, et al. Exertional heat stroke: new concepts regarding cause and care. Curr Sports Med Rep. 2012;11(3):115-123.CrossRefGoogle Scholar
15. Wallace, RF, Kriebel, D, Punnett, L, et al. Risk factors for recruit exertional heat illness by gender and training period. Aviat Space Environ Med. 2006;77(4):415-421.Google ScholarPubMed
16. Armed Forces Health Surveillance Branch. Update: heat injuries, active component, U.S. Army, Navy, Air Force, and Marine Corps, 2015. MSMR. 2016;23(3):16-19.Google Scholar
17. Budd, GM. Wet-bulb globe temperature (WBGT)—its history and its limitations. J Sci Med Sport. 2008;11(1):20-32.CrossRefGoogle ScholarPubMed
18. Occupational Safety and Health Administration. Using the Heat Index to Protect Workers. https://www.osha.gov/SLTC/heatillness/heat_index/using_heat_protect_workers.html. Published 2017. Accessed June 1, 2017.Google Scholar
19. Iheanacho, I. Can the USA National Weather Service Heat Index Substitute for Wet Bulb Globe Temperature for Heat Stress Exposure Assessment? Tampa, FL: Scholar Commons, University of South Florida; 2014.Google Scholar
20. US Army Public Health Center. Heat Illness Prevention. https://phc.amedd.army.mil/topics/discond/hipss/Pages/HeatInjuryPrevention.aspx. Published 2017. Accessed May 30, 2017.Google Scholar
21. Bernard, TE. Occupational Heat Stress in USA: Whither We Go? Ind Health. 2014;52(1):1-4.CrossRefGoogle Scholar
22. Bernard, TE, Luecke, CL, Schwartz, SW, et al. WBGT clothing adjustments for four clothing ensembles under three relative humidity levels. J Occup Environ Hyg. 2005;2(5):251-256.CrossRefGoogle ScholarPubMed
23. Garbern, SC, Ebbeling, LG, Bartels, SA. A systematic review of health outcomes among disaster and humanitarian responders. Prehosp Disaster Med. 2016;31(6):635-642.CrossRefGoogle ScholarPubMed
24. Dellinger, AM, Kachur, PS, Sternberg, E, et al. Risk of heat-related injury to disaster relief workers in a slow-onset flood disaster. J Occup Environ Med. 1996;38(7):689-692.CrossRefGoogle Scholar
25. Rusiecki, JA, Thomas, DL, Chen, L, et al. Disaster-related exposures and health effects among US Coast Guard responders to hurricanes Katrina and Rita: a cross-sectional study. J Occup Environ Med. 2014;56(8):820-833.CrossRefGoogle ScholarPubMed
26. Garzon-Villalba, XP, Mbah, A, Wu, Y, et al. Exertional heat illness and acute injury related to ambient wet bulb globe temperature. Am J Ind Med. 2016;59:1169-1176.CrossRefGoogle ScholarPubMed
27. Rusiecki, J, Alexander, M, Schwartz, EG, et al. The Deepwater Horizon oil spill Coast Guard Cohort study. Occup Environ Med. 2017;75(3):165-175.CrossRefGoogle ScholarPubMed
28. Zou, G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004;159(7):702-706.CrossRefGoogle ScholarPubMed
29. Thompson, ML, Myers, JE, Kriebel, D. Prevalence odds ratio or prevalence ratio in the analysis of cross sectional data: what is to be done? Occup Environ Med. 1998;55(4):272-277.CrossRefGoogle ScholarPubMed
30. Costello, A, Abbas, M, Allen, A, et al. Managing the health effects of climate change. Lancet. 2009;373(9676):1693-1733.CrossRefGoogle ScholarPubMed
31. Watts, N, Adger, WN, Ayeb-Karlsson, S, et al. The Lancet countdown: tracking progress on health and climate change. Lancet. 2017;389(10074):1151-1164.Google ScholarPubMed

Erickson et al. supplementary material

Table S1

File 16 KB

Erickson et al. supplementary material

Table S2

File 14 KB

Erickson et al. supplementary material

Table S3

File 19 KB

Erickson et al. supplementary material

Table S4

File 14 KB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 12
Total number of PDF views: 95 *
View data table for this chart

* Views captured on Cambridge Core between 06th November 2018 - 2nd March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Environmental Heat Exposure and Heat-Related Symptoms in United States Coast Guard Deepwater Horizon Disaster Responders
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Environmental Heat Exposure and Heat-Related Symptoms in United States Coast Guard Deepwater Horizon Disaster Responders
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Environmental Heat Exposure and Heat-Related Symptoms in United States Coast Guard Deepwater Horizon Disaster Responders
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *