Skip to main content
×
Home
    • Aa
    • Aa

Evolution of body size in anteaters and sloths (Xenarthra, Pilosa): phylogeny, metabolism, diet and substrate preferences

  • N. Toledo (a1) (a2), M.S. Bargo (a2) (a3), S.F. Vizcaíno (a1) (a2), G. De Iuliis (a4) and F. Pujos (a5)...
Abstract
ABSTRACT

Pilosa include anteaters (Vermilingua) and sloths (Folivora). Modern tree sloths are represented by two genera, Bradypus and Choloepus (both around 4–6 kg), whereas the fossil record is very diverse, with approximately 90 genera ranging in age from the Oligocene to the early Holocene. Fossil sloths include four main clades, Megalonychidae, Megatheriidae, Nothrotheriidae, and Mylodontidae, ranging in size from tens of kilograms to several tons. Modern Vermilingua are represented by three genera, Cyclopes, Tamandua and Myrmecophaga, with a size range from 0.25 kg to about 30 kg, and their fossil record is scarce and fragmentary. The dependence of the body size on phylogenetic pattern of Pilosa is analysed here, according to current cladistic hypotheses. Orthonormal decomposition analysis and Abouheif C-mean were performed. Statistics were significantly different from the null-hypothesis, supporting the hypothesis that body size variation correlates with the phylogenetic pattern. Most of the correlation is concentrated within Vermilingua, and less within Mylodontidae, Megatheriidae, Nothrotheriidae and Megalonychidae. Influence of basal metabolic rate (BMR), dietary habits and substrate preference is discussed. In anteaters, specialised insectivory is proposed as the primary constraint on body size evolution. In the case of sloths, mylodontids, megatheriids and nothrotheriids show increasing body size through time; whereas megalonychids retain a wider diversity of sizes. Interplay between BMR and dietary habits appears to be the main factor in shaping evolution of sloth body size.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Evolution of body size in anteaters and sloths (Xenarthra, Pilosa): phylogeny, metabolism, diet and substrate preferences
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Evolution of body size in anteaters and sloths (Xenarthra, Pilosa): phylogeny, metabolism, diet and substrate preferences
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Evolution of body size in anteaters and sloths (Xenarthra, Pilosa): phylogeny, metabolism, diet and substrate preferences
      Available formats
      ×
Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

E. Amson , C. de Muizon , M. Laurin , C. Argot & V. de Buffrénil 2014. Gradual adaptation of bone structure to aquatic lifestyle in extinct sloths from Peru. Proceedings of the Royal Society, London B: Biological Sciences 281(1782), 16.

E. Amson , C. Argot , H. G. McDonald & C. de Muizon 2015. Osteology and functional morphology of the axial postcranium of the marine sloth Thalassocnus (Mammalia, Tardigrada) with paleobiological implications. Journal of Mammalian Evolution 22(4), 473518.

E. Amson , C. de Muizon & T. J. Gaudin 2016. A reappraisal of the phylogeny of the Megatheria (Mammalia: Tardigrada), with an emphasis on the relationships of the Thalassocninae, the marine sloths. Zoological Journal of the Linnean Society. doi: 10.1111/zoj.12450

M. S. Bargo , S. F. Vizcaíno , F. Archuby & R. E. Blanco 2000. Limb bone proportions, strength and digging in some Lujanian (Late Pleistocene–Early Holocene) mylodontid ground sloths (Mammalia, Xenarthra). Journal of Vertebrate Paleontology 20, 601–10.

M. S. Bargo , N. Toledo & S. F. Vizcaíno 2006. Muzzle of South American ground sloths (Xenarthra, Tardigrada). Journal of Morphology 267, 248–63.

M. S. Bargo , S. F. Vizcaíno & R. F. Kay 2009. Predominance of orthal masticatory movements in the early Miocene Eucholaeops (Mammalia, Xenarthra, Tardigrada, Megalonychidae) and other megatherioid sloths. Journal of Vertebrate Paleontology 29, 870–80.

M. S. Bargo , N. Toledo & S. F. Vizcaíno 2012. Paleobiology of the Santacrucian sloths and anteaters (Xenarthra, Pilosa). In S. F. Vizcaíno , R. F. Kay & M. S. Bargo (eds) Early Miocene Paleobiology in Patagonia: High-latitude Paleocommunities of the Santa Cruz Formation, 216–42. Cambridge: Cambridge University Press. 378 pp.

J. H. Brown , F. Gillooly , A. P. Allen , V. M. Savage & G. B. West 2004. Toward a metabolic theory of ecology. Ecology 85, 1771–89.

J. H. Brown & G. B. West 2000. Scaling in Biology. New York: Oxford University Press. 352 pp.

G. P Burness , J. Diamond & T. Flannery 2001. Dinosaurs, dragons and dwarfs: the evolution of maximal body size. PNAS 98(25): 14518–23.

A. L Cione , E. P. Tonni & L. Soibelzon 2003. The Broken Zig-Zag: Late Cenozoic large mammals and tortoise extinction in South America. Revista del Museo Argentino de Ciencias Naturales 5(1), 119.

S. De Esteban-Trivigno , M. Mendoza & M. De Renzi 2008. Body mass estimation in Xenarthra: A predictive equation suitable for all quadrupedal terrestrial placentals? Journal of Morphology 269, 1276–93.

G. De Iuliis , T. J. Gaudin & M. J. Vicars 2011. A new genus and species of nothrotheriid sloth (Xenarthra, Tardigrada, Nothrotheriidae) from the late Miocene (Huayquerian) of Peru. Palaeontology 54(1), 171205.

S. Dray & A. B. Dufour 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22(4), 120.

R. A. Fariña & R. E. Blanco 1996. Megatherium, the stabber. Proceedings of the Royal Society, London 263, 1725–29.

T. J. Gaudin 2004. Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zoological Journal of the Linnean Society 140, 255305.

T. J. Gaudin & D. G. Branham 1998. The phylogeny of the Myrmecophagidae (Mammalia, Xenarthra, Vermilingua) and the relationship of Eurotamandua to the Vermilingua. Journal of Mammalian Evolution 5, 237–65.

T. J. Gaudin & D. A. Croft 2015. Paleogene Xenarthra and the evolution of South American mammals. Journal of Mammalogy 96(4), 622–34.

J. L. Green & D. C. Kalthoff 2015. Xenarthran dental microstructure and dental microwear analyses, with new data for Megatherium americanum (Megatheriidae). Journal of Mammalogy 96(4), 645–57.

L. F. Hinojosa 2005. Cambios climáticos y vegetacionales inferidos a partir de paleofloras cenozoicas del sur de Sudamérica. Revista Geológica de Chile 32(1), 95115.

R. F. Kay , S. F. Vizcaíno & M. S. Bargo 2012. A review of the paleoenvironment and paleoecology of the Miocene Santa Cruz Formation. In S. F. Vizcaíno , R. F. Kay & M. S. Bargo (eds) Early Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz Formation, 331–65. Cambridge: Cambridge University Press. 378 pp.

M. Kleiber 1932. Body size and metabolism. Hilgardia 6, 315–53.

B. K. McNab 1978. The evolution of endothermy in the phylogeny of mammals. The American Naturalist 112(983), 121.

B. K. McNab 1984. Physiological convergence amongst ant-eating and termite-eating mammals. Journal of Zoology (London) 203, 485510.

G. G. Montgomery , & M. E. Sunquist 1975. Impact of sloths on Neotropical forest energy flow and nutrient cycling. In F. B. Golley & E. Medina (eds) Tropical Ecological Systems, 6998. Heidelberg: Springer Verlag. xvi+398 pp.

C. de Muizon & H. G. McDonald 1995. An aquatic sloth from the Pliocene of Peru. Nature 375, 224–27.

C. de Muizon , H. G. McDonald , R. Salas & M. Urbina 2004. The evolution of feeding adaptations of the aquatic sloth Thalassocnus . Journal of Vertebrate Paleontology 24, 401–13.

T. Münkemüller , S. Lavergne , B. Bzeznik , S. Dray , T. Jombart , K. Schiffers & W. Thuiller 2012. How to measure and test phylogenetic signal. Methods in Ecology and Evolution 3, 743–56.

V. L. Naples 1999. Morphology, evolution and function of feeding in the giant anteater (Myrmecophaga tridactyla). Journal of Zoology (London) 249, 1941.

V. L Naples & R. K. McAfee 2012. Reconstruction of the cranial musculature and masticatory function of the Pleistocene pan-American ground sloth Eremotherium laurillardi (Mammalia, Xenarthra, Megatheriidae). Historical Biology 24(2), 187206.

J. A. Nyakatura , A. Petrovitch & M. S. Fischer 2010. Limb kinematics of the two-toed sloth (Choloepus didactylus, Xenarthra) and its implications for the evolution of the sloth locomotor apparatus. Zoology 113, 221–34.

S. Ollier , P. Couteron & D. Chessell 2006. Orthonormal transform to decompose the variance of a life-history trait across a phylogenetic tree. Biometrics 62(2), 471–77.

B. Patterson & R. Pascual 1968. The fossil mammal fauna of South America. The Quarterly Review of Biology 43(4), 409–51.

S. Pavoine , S. Ollier , D. Pontier & D. Chessel 2008. Testing for phylogenetic signal in phenotypic traits: new matrices of phylogenetic proximities. Theoretical Population Biology 73(1), 7991.

F. Pujos , G. De Iuliis , C. Argot & L. Werdelin 2007. A peculiar climbing Megalonychidae from the Pleistocene of Peru and its implication for sloth history. Zoological Journal of the Linnean Society 149, 179235.

F. Pujos , T. J. Gaudin , G. De Iuliis & C. Cartelle 2012. Recent advances on variability, morpho-functional adaptations, dental terminology, and evolution of sloths. Journal of Mammalian Evolution 19, 159–69.

S. Raj Pant , A. Goswami & J. A. Finarelli 2014. Complex body size trends in the evolution of sloths (Xenarthra: Pilosa). BMC Evolutionary Biology 14, 184–92.

K. Z. Reiss 2000. Feeding in myrmecophagous mammals. In K. Schwenk (ed.) Feeding: Form, Function and Evolution in Tetrapod Vertebrates, 459–85. California: Academic Press. 537 pp.

B. J. Shockey & F. Anaya 2011. Grazing in a new late Oligocene mylodontid sloth and a mylodontid radiation as a component of the Eocene-Oligocene faunal turnover and the early spread of grasslands/savannas in South America. Journal of Mammal Evolution 18, 101–15.

F. A. Smith , S. K. Lyons , S. K. M. Ernest , K. E. Jones , D. M. Kaufman , T. Dayan , P. A. Marquet , J. H. Brown & J. P. Haskell 2003. Body mass of late Quaternary mammals. Ecology 84(12), 3403.

D. W. Steadman , P. S. Martin , R. D. E. MacPhee , A. J. T. Jull , H. G. McDonald , C. A. Woods , M. Iturralde-Vinent & G. W. L. Hodgins 2005. Asynchronous extinction of late Quaternary sloths on continents and islands. PNAS 102(33), 11763–68.

A. J. Stuart 1991. Mammalian extinctions in the late Pleistocene of northern Eurasia and North-America. Biological Reviews of the Cambridge Philosophical Society 66, 453562.

N. Toledo , M. S. Bargo & S. F. Vizcaíno 2013. Muscular reconstruction and functional morphology of the forelimb of Early Miocene Sloths (Xenarthra, Folivora) of Patagonia. The Anatomical Record 296, 305–25.

N. Toledo , M. S. Bargo & S. F. Vizcaíno 2015. Muscular reconstruction and functional morphology of the hind limb of Santacrucian (early Miocene) sloths (Xenarthra, Folivora) of Patagonia. The Anatomical Record 298, 842–64.

S. F. Vizcaíno 2009. The teeth of the “toothless”: novelties and key innovations in the evolution of xenarthrans (Mammalia, Xenarthra). Paleobiology 35(3), 343–66.

S. F. Vizcaíno , G. H. Cassini , N. Toledo & M. S. Bargo 2012. On the evolution of large size in mammalian herbivores of Cenozoic faunas of southern South America. In B. D. Patterson & L. P. Costa (eds) Bones, Clones and Biomes: An 80-million Year History of Recent Neotropical Mammals, 76101. Chicago, IL: The University of Chicago Press. 432 pp.

J. L. White 1993. Indicators of locomotor habits in xenarthrans: evidence for locomotor heterogeneity among fossil sloths. Journal of Vertebrate Paleontology 13, 230–42.

G. Woodward , B. Ebenman , M. Emmerson , J. M. Montoya , J. M. Olesen , A. Valido & P. H. Warren 2005. Body size in ecological networks. TRENDS in Ecology and Evolution 20(7), 402–09.

J. Zachos , M. Pagani , L. Sloan , E. Thomas & K. Billups 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–93.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Earth and Environmental Science Transactions of The Royal Society of Edinburgh
  • ISSN: 1755-6910
  • EISSN: 1755-6929
  • URL: /core/journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary Materials

Toledo supplementary material
Toledo supplementary material 4

 Word (15 KB)
15 KB
PDF
Supplementary Materials

Toledo supplementary material
Toledo supplementary material 3

 PDF (24 KB)
24 KB
PDF
Supplementary Materials

Toledo supplementary material
Toledo supplementary material 2

 PDF (19 KB)
19 KB
PDF
Supplementary Materials

Toledo supplementary material
Toledo supplementary material 1

 PDF (23 KB)
23 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 197
Total number of PDF views: 231 *
Loading metrics...

Abstract views

Total abstract views: 660 *
Loading metrics...

* Views captured on Cambridge Core between 16th January 2017 - 24th May 2017. This data will be updated every 24 hours.