Skip to main content
×
Home

Evolution of body size in anteaters and sloths (Xenarthra, Pilosa): phylogeny, metabolism, diet and substrate preferences

  • N. Toledo (a1) (a2), M.S. Bargo (a2) (a3), S.F. Vizcaíno (a1) (a2), G. De Iuliis (a4) and F. Pujos (a5)...
Abstract
ABSTRACT

Pilosa include anteaters (Vermilingua) and sloths (Folivora). Modern tree sloths are represented by two genera, Bradypus and Choloepus (both around 4–6 kg), whereas the fossil record is very diverse, with approximately 90 genera ranging in age from the Oligocene to the early Holocene. Fossil sloths include four main clades, Megalonychidae, Megatheriidae, Nothrotheriidae, and Mylodontidae, ranging in size from tens of kilograms to several tons. Modern Vermilingua are represented by three genera, Cyclopes, Tamandua and Myrmecophaga, with a size range from 0.25 kg to about 30 kg, and their fossil record is scarce and fragmentary. The dependence of the body size on phylogenetic pattern of Pilosa is analysed here, according to current cladistic hypotheses. Orthonormal decomposition analysis and Abouheif C-mean were performed. Statistics were significantly different from the null-hypothesis, supporting the hypothesis that body size variation correlates with the phylogenetic pattern. Most of the correlation is concentrated within Vermilingua, and less within Mylodontidae, Megatheriidae, Nothrotheriidae and Megalonychidae. Influence of basal metabolic rate (BMR), dietary habits and substrate preference is discussed. In anteaters, specialised insectivory is proposed as the primary constraint on body size evolution. In the case of sloths, mylodontids, megatheriids and nothrotheriids show increasing body size through time; whereas megalonychids retain a wider diversity of sizes. Interplay between BMR and dietary habits appears to be the main factor in shaping evolution of sloth body size.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Evolution of body size in anteaters and sloths (Xenarthra, Pilosa): phylogeny, metabolism, diet and substrate preferences
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Evolution of body size in anteaters and sloths (Xenarthra, Pilosa): phylogeny, metabolism, diet and substrate preferences
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Evolution of body size in anteaters and sloths (Xenarthra, Pilosa): phylogeny, metabolism, diet and substrate preferences
      Available formats
      ×
Copyright
References
Hide All
Abouheif E. 1999. A method for testing the assumption of phylogenetic independence in comparative data. Evolutionary Ecology Research 1, 895909.
Amson E., de Muizon C., Laurin M., Argot C. & de Buffrénil V. 2014. Gradual adaptation of bone structure to aquatic lifestyle in extinct sloths from Peru. Proceedings of the Royal Society, London B: Biological Sciences 281(1782), 16.
Amson E., Argot C., McDonald H. G. & de Muizon C. 2015. Osteology and functional morphology of the axial postcranium of the marine sloth Thalassocnus (Mammalia, Tardigrada) with paleobiological implications. Journal of Mammalian Evolution 22(4), 473518.
Amson E., Muizon C. de & Gaudin T. J. 2016. A reappraisal of the phylogeny of the Megatheria (Mammalia: Tardigrada), with an emphasis on the relationships of the Thalassocninae, the marine sloths. Zoological Journal of the Linnean Society. doi: 10.1111/zoj.12450
Bargo M. S. 2001. The ground sloth Megatherium americanum: skull shape, bite forces, and diet. Acta Paleontologica Polonica 46: 4160.
Bargo M. S., Vizcaíno S. F., Archuby F. & Blanco R. E. 2000. Limb bone proportions, strength and digging in some Lujanian (Late Pleistocene–Early Holocene) mylodontid ground sloths (Mammalia, Xenarthra). Journal of Vertebrate Paleontology 20, 601–10.
Bargo M. S., Toledo N. & Vizcaíno S. F. 2006. Muzzle of South American ground sloths (Xenarthra, Tardigrada). Journal of Morphology 267, 248–63.
Bargo M. S., Vizcaíno S. F. & Kay R. F. 2009. Predominance of orthal masticatory movements in the early Miocene Eucholaeops (Mammalia, Xenarthra, Tardigrada, Megalonychidae) and other megatherioid sloths. Journal of Vertebrate Paleontology 29, 870–80.
Bargo M. S., Toledo N. & Vizcaíno S. F. 2012. Paleobiology of the Santacrucian sloths and anteaters (Xenarthra, Pilosa). In Vizcaíno S. F., Kay R. F. & Bargo M. S. (eds) Early Miocene Paleobiology in Patagonia: High-latitude Paleocommunities of the Santa Cruz Formation, 216–42. Cambridge: Cambridge University Press. 378 pp.
Bargo M. S. & Vizcaíno S. F. 2008. Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus. Ameghiniana 45, 175–96.
Brown J. H., Gillooly F., Allen A. P., Savage V. M. & West G. B. 2004. Toward a metabolic theory of ecology. Ecology 85, 1771–89.
Brown J. H. & West G. B. 2000. Scaling in Biology. New York: Oxford University Press. 352 pp.
Burness G. P, Diamond J. & Flannery T. 2001. Dinosaurs, dragons and dwarfs: the evolution of maximal body size. PNAS 98(25): 14518–23.
Cartmill M. 1985. Climbing. In Hildebrand M., Bramble D. M., Liem K. F. & Wake D. B. (eds) Functional Vertebrate Morphology, 7388. Chicago: University of Chicago Press. 544 pp.
Chiarello A. G. 2008. Sloth ecology: an overview of field studies. In Vizcaíno S. F. & Loughry W. J. (eds) The Biology of the Xenarthra, 269–80. Gainesville, FL: University Press of Florida. 640 pp.
Cione A. L, Tonni E. P. & Soibelzon L. 2003. The Broken Zig-Zag: Late Cenozoic large mammals and tortoise extinction in South America. Revista del Museo Argentino de Ciencias Naturales 5(1), 119.
Cione A. L., Gasparini G. M., Soibelzon E., Soibelzon L. H. & Tonni E. P. 2015. The Great American Biotic Interchange: a South American Perspective. London: Springer. 97 pp.
Croft D. A. 2000. Archaeohyracidae (Mammalia: Notoungulata) from the Tinguiririca Fauna, central Chile, and the evolution and paleoecology of South American mammalian herbivores. PhD Dissertation, University of Chicago, USA.
Damuth J. & MacFadden B. J. 1990. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge: Cambridge University Press. 390 pp.
De Esteban-Trivigno S., Mendoza M. & De Renzi M. 2008. Body mass estimation in Xenarthra: A predictive equation suitable for all quadrupedal terrestrial placentals? Journal of Morphology 269, 1276–93.
De Iuliis G., Gaudin T. J. & Vicars M. J. 2011. A new genus and species of nothrotheriid sloth (Xenarthra, Tardigrada, Nothrotheriidae) from the late Miocene (Huayquerian) of Peru. Palaeontology 54(1), 171205.
Dray S. & Dufour A. B. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22(4), 120.
Dray S. & Jombart T. 2008. Adephylo: exploratory analyses for the phylogenetic comparative method. Bioinformatics 26, 1907–09.
Fariña R. A. 1996. Trophic relationships among Lujanian mammals. Evolutionary Theory 11, 125–34.
Fariña R. A. 2002. Megatherium, el pelado: sobre la apariencia de los grandes perezosos (Mammalia; Xenarthra) cuaternarios. Ameghiniana 39(2), 241–44.
Fariña R. A., Vizcaíno S. F. & Bargo M. S. 1998. Body size estimations in Lujanian (Late Pleistocene-Early Holocene of South America) mammal megafauna. Mastozoología Neotropical 5(2), 87108.
Fariña R. A., Vizcaíno S. F. & De Iuliis G. 2013. Megafauna: Giant Beasts of Pleistocene South America. Bloomington: Indiana University Press. 448 pp.
Fariña R. A. & Blanco R. E. 1996. Megatherium, the stabber. Proceedings of the Royal Society, London 263, 1725–29.
Fields S. E. 2010. The ground sloth Megalonyx (Xenarthra: Megalonychidae) from the Pleistocene (Late Irvingtonian) Camelot Local Fauna, Dorchester County, South Carolina. Transactions of the American Philosophical Society 100(4), 176.
Gaudin T. J. 2004. Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zoological Journal of the Linnean Society 140, 255305.
Gaudin T. J. & Branham D. G. 1998. The phylogeny of the Myrmecophagidae (Mammalia, Xenarthra, Vermilingua) and the relationship of Eurotamandua to the Vermilingua. Journal of Mammalian Evolution 5, 237–65.
Gaudin T. J. & Croft D. A. 2015. Paleogene Xenarthra and the evolution of South American mammals. Journal of Mammalogy 96(4), 622–34.
Gaudin T. J. & McDonald H. G. 2008. Morphology-based investigations of the phylogenetic relationships among extant and fossil xenarthrans. In Vizcaíno S. F. & Loughry W. J. (eds) The Biology of the Xenarthra, 2436. Gainesville, FL: University Press of Florida. 640 pp.
Gilmore D., Duarte D. F. & Peres da Costa C. 2008. The physiology of two- and three-toed sloths. In Vizcaíno S. F. & Loughry W. J. (eds) The Biology of the Xenarthra, 130–50. Gainesville, FL: University Press of Florida. 640 pp.
Grand T. I. 1978. Adaptations of tissue and limb segments to facilitate moving and feeding in arboreal folivores. In Montgomery G. G. (ed.) The Ecology of Arboreal Folivores. 231–41. Washington, DC: Smithsonian Institution Press. 574 pp.
Green J. L. & Kalthoff D. C. 2015. Xenarthran dental microstructure and dental microwear analyses, with new data for Megatherium americanum (Megatheriidae). Journal of Mammalogy 96(4), 645–57.
Hildebrand M. 1988. Analysis of Vertebrate Structure (3rd Ed.). New York: Wiley & Sons. 701 pp.
Hinojosa L. F. 2005. Cambios climáticos y vegetacionales inferidos a partir de paleofloras cenozoicas del sur de Sudamérica. Revista Geológica de Chile 32(1), 95115.
Hirschfeld S. E. 1976. A new fossil anteater (Edentata, Mammalia) from Colombia, S.A. and evolution of the Vermilingua. Journal of Paleontology 50, 419–32.
Janis C. M. 1990. Correlation of cranial and dental variables with body size in ungulates and macropodoids. In Damuth J. & MacFadden B. J. (eds) Body Size in Mammalian Paleobiology: Estimation and Biological Implications, 255–99. Cambridge: Cambridge University Press. 397 pp.
Kay R. F., Vizcaíno S. F. & Bargo M. S. 2012. A review of the paleoenvironment and paleoecology of the Miocene Santa Cruz Formation. In Vizcaíno S. F., Kay R. F. & Bargo M. S. (eds) Early Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz Formation, 331–65. Cambridge: Cambridge University Press. 378 pp.
Kleiber M. 1932. Body size and metabolism. Hilgardia 6, 315–53.
MacPhee R. D. E. & Reguero M. A. 2010. Reinterpretation of a Middle Eocene record of Tardigrada (Pilosa, Xenarthra, Mammalia) from La Meseta Formation, Seymour Island, West Antarctica. American Museum Novitates 3686, 121.
McDonald H. G. 2003. Sloth remains from North American caves and associated karst features. In Schubert B. W., Mead J. I. & Graham R. W. (eds) Ice Age Cave Faunas of North America, 116. Bloomington, IN: Denver Museum of Nature and Science & Indiana University Press. 299 pp.
McDonald H. G. 2005. Paleoecology of extinct xenarthrans and the great American biotic interchange. Bulletin of the Florida Museum of Natural History 45(4), 313–33.
McDonald H. G., Vizcaíno S. F. & Bargo M. S. 2008. Skeletal anatomy and the fossil history of the Vermilingua. In Vizcaíno S. F. & Loughry W. J. (eds) The Biology of the Xenarthra, 6478. Gainesville, FL: University Press of Florida. 640 pp.
McDonald H. G. & De Iuliis G. 2008. Fossil history of sloths. In Vizcaíno S. F. & Loughry W. J. (eds) The Biology of the Xenarthra, 2436. Gainesville, FL: University Press of Florida. 640 pp.
McNab B. K. 1978. The evolution of endothermy in the phylogeny of mammals. The American Naturalist 112(983), 121.
McNab B. K. 1984. Physiological convergence amongst ant-eating and termite-eating mammals. Journal of Zoology (London) 203, 485510.
McNab B. K. 1985. Energetics, population biology, and distribution of xenarthrans, living and extinct. In Montgomery G. G. (ed.) The Evolution and Ecology of Armadillos, Sloths and Vermilinguas, 219–32. Washington, DC: Smithsonian Institution Press. 451 pp.
Montgomery G. G. 1985. Movements, foraging and food habits of the four extant species of neotropical vermilinguas (Mammalia: Myrmecophagidae). In Montgomery G. G. (ed.) The Evolution and Ecology of Armadillos, Sloths and Vermilinguas, 365–77. Washington, DC: Smithsonian Institution Press. 451 pp.
Montgomery G. G., & Sunquist M. E. 1975. Impact of sloths on Neotropical forest energy flow and nutrient cycling. In Golley F. B. & Medina E. (eds) Tropical Ecological Systems, 6998. Heidelberg: Springer Verlag. xvi+398 pp.
Muizon C. de & McDonald H. G. 1995. An aquatic sloth from the Pliocene of Peru. Nature 375, 224–27.
Muizon C. de, McDonald H. G., Salas R. & Urbina M. 2004. The evolution of feeding adaptations of the aquatic sloth Thalassocnus . Journal of Vertebrate Paleontology 24, 401–13.
Münkemüller T., Lavergne S., Bzeznik B., Dray S., Jombart T., Schiffers K. & Thuiller W. 2012. How to measure and test phylogenetic signal. Methods in Ecology and Evolution 3, 743–56.
Naples V. L. 1982. Cranial osteology and function in the tree sloths, Bradypus and Choloepus . American Museum Novitates 2739, 121.
Naples V. L. 1999. Morphology, evolution and function of feeding in the giant anteater (Myrmecophaga tridactyla). Journal of Zoology (London) 249, 1941.
Naples V. L & McAfee R. K. 2012. Reconstruction of the cranial musculature and masticatory function of the Pleistocene pan-American ground sloth Eremotherium laurillardi (Mammalia, Xenarthra, Megatheriidae). Historical Biology 24(2), 187206.
Naples V. L. & McAfee R. K. 2014. Chewing through the Miocene: an examination of the feeding musculature in the ground sloth from South America Hapalops (Mammalia: Pilosa). F1000 Research 3, 86 doi: 10.12688/f1000research.3282.1
Nowak R. M. 1999. Walker's Mammals of the World, Sixth Ed. Baltimore: Johns Hopkins University Press. 1936 pp.
Nyakatura J. A., Petrovitch A. & Fischer M. S. 2010. Limb kinematics of the two-toed sloth (Choloepus didactylus, Xenarthra) and its implications for the evolution of the sloth locomotor apparatus. Zoology 113, 221–34.
Ollier S., Couteron P. & Chessell D. 2006. Orthonormal transform to decompose the variance of a life-history trait across a phylogenetic tree. Biometrics 62(2), 471–77.
Paradis E. 2006. Analysis of Phylogenetics and Evolution with R. (2nd Edition). New York: Springer. 401 pp.
Patterson B. & Pascual R. 1968. The fossil mammal fauna of South America. The Quarterly Review of Biology 43(4), 409–51.
Pavoine S., Ollier S., Pontier D. & Chessel D. 2008. Testing for phylogenetic signal in phenotypic traits: new matrices of phylogenetic proximities. Theoretical Population Biology 73(1), 7991.
Pujos F., De Iuliis G., Argot C. & Werdelin L. 2007. A peculiar climbing Megalonychidae from the Pleistocene of Peru and its implication for sloth history. Zoological Journal of the Linnean Society 149, 179235.
Pujos F., Gaudin T. J., De Iuliis G. & Cartelle C. 2012. Recent advances on variability, morpho-functional adaptations, dental terminology, and evolution of sloths. Journal of Mammalian Evolution 19, 159–69.
Pujos F., De Iuliis G. & Cartelle C. 2016. A paleogeographic overview of tropical fossil sloths: towards an understanding of the origin of extant suspensory sloths? Journal of Mammalian Evolution. DOI 10.1007/s10914-016-9330-4
Raj Pant S., Goswami A. & Finarelli J. A. 2014. Complex body size trends in the evolution of sloths (Xenarthra: Pilosa). BMC Evolutionary Biology 14, 184–92.
Reid F. 1997. A Field Guide to the Mammals of Central America and Southeast Mexico. Oxford : Oxford University Press. 398 pp.
Reiss K. Z. 2000. Feeding in myrmecophagous mammals. In Schwenk K. (ed.) Feeding: Form, Function and Evolution in Tetrapod Vertebrates, 459–85. California: Academic Press. 537 pp.
Rodrigues F. H. G., Medri I. M., de Miranda G. H. B., Camilo-Alves C. & Mourao G. 2008. Anteater behavior and ecology. In Vizcaíno S. F. & Loughry W. J. (eds) The Biology of the Xenarthra, 257–68. Gainesville, FL: University Press of Florida. 640 pp.
Shockey B. J. & Anaya F. 2011. Grazing in a new late Oligocene mylodontid sloth and a mylodontid radiation as a component of the Eocene-Oligocene faunal turnover and the early spread of grasslands/savannas in South America. Journal of Mammal Evolution 18, 101–15.
Smith M. J. & Savage R. J. G. 1955. Some locomotory adaptations in mammals. Journal of the Linnean Society (Zoology) 42, 603–22.
Smith F. A., Lyons S. K., Ernest S. K. M., Jones K. E., Kaufman D. M., Dayan T., Marquet P. A., Brown J. H. & Haskell J. P. 2003. Body mass of late Quaternary mammals. Ecology 84(12), 3403.
Steadman D. W., Martin P. S., MacPhee R. D. E., Jull A. J. T., McDonald H. G., Woods C. A., Iturralde-Vinent M. & Hodgins G. W. L. 2005. Asynchronous extinction of late Quaternary sloths on continents and islands. PNAS 102(33), 11763–68.
Stuart A. J. 1991. Mammalian extinctions in the late Pleistocene of northern Eurasia and North-America. Biological Reviews of the Cambridge Philosophical Society 66, 453562.
Toledo N., Bargo M. S. & Vizcaíno S. F. 2013. Muscular reconstruction and functional morphology of the forelimb of Early Miocene Sloths (Xenarthra, Folivora) of Patagonia. The Anatomical Record 296, 305–25.
Toledo N., Cassini G. H., Vizcaíno S. F. & Bargo M. S. 2014. Mass estimation of Santacrucian sloths from the Early Miocene Santa Cruz Formation of Patagonia, Argentina. Acta Palaeontologica Polonica 59(2), 267–80.
Toledo N., Bargo M. S. & Vizcaíno S. F. 2015. Muscular reconstruction and functional morphology of the hind limb of Santacrucian (early Miocene) sloths (Xenarthra, Folivora) of Patagonia. The Anatomical Record 298, 842–64.
Vizcaíno S. F. 2009. The teeth of the “toothless”: novelties and key innovations in the evolution of xenarthrans (Mammalia, Xenarthra). Paleobiology 35(3), 343–66.
Vizcaíno S. F., Zárate M., Bargo M. S. & Dondas A. 2001. Pleistocene large burrows in the Mar del Plata area (Buenos Aires Province, Argentina) and their probable builders. Acta Paleontologica Polonica 46, 157–69.
Vizcaíno S. F., Bargo M. S. & Cassini G. H. 2006. Dental occlusal surface area in relation to body mass, food habits and other biologic features in fossil xenarthrans. Ameghiniana 43(1), 1126.
Vizcaíno S. F., Bargo M. S. & Fariña R. A. 2008. Form, function and paleobiology in xenarthrans. In Vizcaíno S. F. & Loughry W. L. (eds) The Biology of the Xenarthra, 8699. Gainesville, FL: University Press of Florida. 640 pp.
Vizcaíno S. F., Cassini G. H., Toledo N. & Bargo M. S. 2012. On the evolution of large size in mammalian herbivores of Cenozoic faunas of southern South America. In Patterson B. D. & Costa L. P. (eds) Bones, Clones and Biomes: An 80-million Year History of Recent Neotropical Mammals, 76101. Chicago, IL: The University of Chicago Press. 432 pp.
Vizcaíno S. F. & Scillato-Yané G. J. 1995. Eocene tardigrade (Mammalia, Xenarthra) from Seymour Island, West Antarctica. Antarctic Science 7, 407–08.
Webb S. D. 1985. The interrelationships of tree sloths and ground sloths. In Montgomery G.G. (ed.) The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas, 105–12. Washington, DC: Smithsonian Institution Press. 451 pp.
White J. L. 1993. Indicators of locomotor habits in xenarthrans: evidence for locomotor heterogeneity among fossil sloths. Journal of Vertebrate Paleontology 13, 230–42.
White J. L. 1997. Locomotor adaptations in Miocene xenarthrans. In Kay R. F., Madden R. H., Cifelli R. L. & Flynn J. J. (eds) Vertebrate Paleontology in the Neotropics. The Miocene Fauna of La Venta, Colombia, 246–64. Washington, DC: Smithsonian Institution Scholarly Press. 608 pp.
Woodward G., Ebenman B., Emmerson M., Montoya J. M., Olesen J. M., Valido A. & Warren P. H. 2005. Body size in ecological networks. TRENDS in Ecology and Evolution 20(7), 402–09.
Young R. J., Coelho C. M. & Wieloch D. R. 2003. A note on the climbing abilities of the giant anteaters, Myrmecophaga tridactyla (Xenarthra, Myrrmecophagidae). Boletim do Museu de Biologia Mello Leitão (Nova Series) 15, 4146.
Zachos J., Pagani M., Sloan L., Thomas E. & Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–93.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Earth and Environmental Science Transactions of The Royal Society of Edinburgh
  • ISSN: 1755-6910
  • EISSN: 1755-6929
  • URL: /core/journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary Materials

Toledo supplementary material
Toledo supplementary material 4

 Word (15 KB)
15 KB
PDF
Supplementary Materials

Toledo supplementary material
Toledo supplementary material 3

 PDF (24 KB)
24 KB
PDF
Supplementary Materials

Toledo supplementary material
Toledo supplementary material 2

 PDF (19 KB)
19 KB
PDF
Supplementary Materials

Toledo supplementary material
Toledo supplementary material 1

 PDF (23 KB)
23 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 269
Total number of PDF views: 453 *
Loading metrics...

Abstract views

Total abstract views: 1034 *
Loading metrics...

* Views captured on Cambridge Core between 16th January 2017 - 12th December 2017. This data will be updated every 24 hours.