Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T11:28:25.628Z Has data issue: false hasContentIssue false

Glacial and volcanic geomorphology of the Chimborazo-Carihuairazo Massif, Ecuadorian Andes

Published online by Cambridge University Press:  03 November 2011

Chalmers M. Clapperton
Affiliation:
Department of Geography, University of Aberdeen, Aberdeen AB9 2UF, Scotland, U.K.

Abstract

The Chimborazo (6,310 m)–Carihuairazo (5,102 m) massif is one of the largest ice-capped central volcanic complexes in the northern Andes. Combined evidence from volcanic and glacial landforms and sediments suggests cyclical evolution during the Pleistocene. Effusive eruptions of mixed high-silica andesite (SiO2%wt c. 60) predominated and built the bulk of the edifice. Explosive activity developed as the parental magma evolved to dacite-rhyolite (SiO2%wt 64–74), culminating with cone collapse and large-scale debris avalanching. Post-collapse activity evolved from the production of high-silica andesite to terminate with monogenetic eruptions of basic andesite (SiO2%wt 54–56) from flank fissures. The last eruption occurred before 11,000 yBP.

The interstratification of volcanic and glacial deposits shows that glaciers expanded and contracted several times during the later Pleistocene, while the volcanic edifices were evolving. Glaciers expanded to altitudinal limits of 3,400–3,600 m during the early last glaciation and reached similar limits sometime after 33,000 yBP; an intervening interstadial interval lasted for 10,000 y. By 20,000–18,000 yBP, glaciers receded slightly because of decreased precipitation, but later readvances culiminated at 12,000–10,000 yBP and during the last 5,000 y. Glacier reconstruction and estimation of former equilibrium line altitudes suggest that the mean annual temperatures during the full glacial, late-glacial and Neoglaciation intervals were lower than now by c. 5–6°C, 2–3°C and 1°C, respectively, but these may be underestimates because of the assumption that precipitation was constant.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barberi, F., Coltelli, M., Ferrara, G., Innocenti, F., Navarro, J. M., Santacroce, R. et al. 1988. Plio-Quaternary volcanism in Ecuador. GEOL MAG 125, 1101.CrossRefGoogle Scholar
Beate, B., 1987. El flujo piroclastico de Chalupas como causante de un desastre natural en el cuaternario de los Andes septentrionales del Ecuador. In Sevilla, J. & Espimosa, T. (eds) First Latin American Symposium on Natural Disasters, Proceedings, 2127.Google Scholar
Bonifaz, E. 1972. Microliticos Arqueológicos. Quito: Escuela Politecnica Nacional. Casa Cultura.Google Scholar
Borgia, A., Poore, C., Carr, M. J., Melson, W. G. & Alvarado, G. E. 1988. Structural, stratigraphic, and petrological aspects of the Arenal-Chato volcanic system. Costa Rica: Evolution of a young stratovolcanic complex. BULL VOLCANOL 50, 86105.CrossRefGoogle Scholar
Briggs, D. 1981. Sediments. London: Butterworth.Google Scholar
Cas, R. & Wright, J. 1987. Volcanic Successions, Modern and Ancient. London: Allen & Unwin.CrossRefGoogle Scholar
Clapperton, C. M. 1983. The Glaciation of the Andes. QUATERNARY SCI REV 2, 83155.CrossRefGoogle Scholar
Clapperton, C. M. 1986. Glacial geomorphology, Quaternary glacial sequence and palaeoclimatic inferences in the Ecuadorian Andes. In Gardiner, V. (ed.) International Geomorphology 1986, Part II, 843–70. London: Wiley.Google Scholar
Clapperton, C. M. 1989. Influence of tectonics on the extent of Quaternary glaciation in the Andes. In Suguio, K. (ed.) International Symposium on global changes in South America, Past, Present, Future. Sao Paulo, (Brasil), May 8–12 1989. SPEC PUBL 1, 151162.Google Scholar
Clapperton, C. M. & McEwan, C. 1985. Late Quaternary moraines in the Chimborazo area, Ecuador. ARCT ALP RES 17, 135142.CrossRefGoogle Scholar
Clapperton, C. M. & Smyth, M. A. 1986. Late Quaternary debris avalanche at Chimborazo, Ecuador. REV CIAF (BOGOTÁ) 11, 112.Google Scholar
Clapperton, C. M. & Vera, R. 1986. The Quaternary glacial sequence in Ecuador, a reinterpretation of the work of Walter Sauer. J QUATERNARY SCI 1, 4556.CrossRefGoogle Scholar
Clapperton, C. M., Sugden, D. E. & Pelto, M. 1989. Relationship of land terminating and fiord glaciers to Holocene climatic change. In Oerlemans, H. (ed.) Glacier Fluctuations and Climatic Change, 5775. Dordrecht: Reidel.CrossRefGoogle Scholar
Climap Members 1976. The surface of Ice-Age Earth. SCIENCE 191, 1131–37.Google Scholar
Colinvaux, P. 1979. The Ice Age Amazon. NATURE 278, 399400.CrossRefGoogle Scholar
Cowie, J. W. & Bassett, M. G. 1989. 1989 Global Stratigraphic Chart, with geochronometric and magnetostratigraphic calibration. EPISODES 12(2), Suppl.Google Scholar
Cuellar, J. C. & Ramirez, C. 1986. Descripcion de los volcanes cuaternarios de Colombia. REV CIAF (BOGOTÁ) 11, 153154.Google Scholar
Estrada, A. 1941. Contribución geológica para el conocimiento de la cangagua de la region interandina del cuaternario en general en el Ecuador. AN UNIV CENT, QUITO 66, 405–88.Google Scholar
Feininger, F. & Seguin, M. 1983. Simple Bouger gravity anomaly field and the inferred crustal structure of continental Ecuador. GEOLOGY 11, 4044.2.0.CO;2>CrossRefGoogle Scholar
Francis, P. W., Gardeweg, M., Ramirez, C. F. & Rothery, D. A. 1985. Catastrophic debris avalanche deposit of Socompa volcano, north Chile. GEOLOGY 13, 600–03.2.0.CO;2>CrossRefGoogle Scholar
Francis, P. W. & Self, S. 1986. Collapsing Volcanoes. SCI AM 256, 6, 7279.Google Scholar
Gill, J. 1981. Orogenic Andesites and Plate Tectonics. Berlin: Springer.CrossRefGoogle Scholar
Graf, K. 1981. Zum Höhenverlauf der Subnivalstufe in den tropischen Anden, insbesondere in Bolivien und Ecuador. Z GEOMORPHOL N F SUPP 37, 124.Google Scholar
Grove, J. 1988. The Little Ice Age. London: Methuen.CrossRefGoogle Scholar
Gumowska-Wdowiak, Z.Manecki, A., Naresbski, W. & Paulo, A. 1974. Mineralogical and chemical study of dacite from Quilotoa volcano in Ecuador. MINERAL POLONICA 5, 317.Google Scholar
Hall, M. 1977. El volcanismo en el Ecuador. Quito: Instituto Panamericano de Geografía e Historía.Google Scholar
Hall, M. & Hillebrandt, C. 1988. Mapa de los peligros volcanicos potentiales asociados con el volcan Cotopaxi. Quito: E P N.Google Scholar
Hall, M. & Wood, C. A. 1985. Volcano-tectonic segmentation of the Northern Andes. GEOLOGY 13, 203–07.2.0.CO;2>CrossRefGoogle Scholar
Hastenrath, S. 1981. The Glaciation of the Ecuadorian Andes. Rotterdam: Balkema.Google Scholar
Helmens, K. F. 1988. Late Pleistocene glacial sequence in the area of the high plain of BogotÁ (eastern cordillera, Colombia). PALAEOGEOGR, PALAEOCLIMATOL, PALAEOECOL 67, 263283.CrossRefGoogle Scholar
Herd, D. 1974. Glacial and volcanic geology of the Ruiz-Tolima volcanic complex, Cordillera Central, Colómbia. PUBL GEOL ESPEC INGEMOMÍNAS, BOGOTÁ 8, 148.Google Scholar
Hradecka, L., Hradecky, P., Kruta, M., Lysenko, V., Mloch, B. & Paulo, A. 1974. La exploración geológica del volcan Cotopaxi en el Ecuador. Prague: I G C.Google Scholar
Jordan, T. 1983. Die vergletscherung des Cotopaxi, Ecuador. Z GLETSCHERK GLAZIALGEOL 18 (HZ.), 5584.Google Scholar
Jordan, T. 1985. Recent glacier distribution and present climate distribution in the Central Andes of South America. Z GLETSCHERKD GLAZIALGEOL 21, 213–24.Google Scholar
Kilian, R. 1987a. Der Chimborazo (6310m) und Carihuairazo (5102m) in Ecuador-Aufbau und Entwicklung eines grossen stratovulkan-komplexes. Unpublished Ph.D. Thesis, University of Tubingen, West Germany.Google Scholar
Kilian, R. 1987b. The development of the Chimborazo (6310m), Carihuairazo (5102m) and other volcanoes in Ecuador. ZENTRALBL GEOL PALAEONTOL 1, H.7/8, 955–65.Google Scholar
Knight, P. 1988. The basal ice and debris sequence at the margin of an equatorial ice cap, El Cotopaxi, Ecuador. GEOGR ANN 70A, 1–2, 913.CrossRefGoogle Scholar
Löffler, E. 1982. Pleistocene and present day glaciations. In Gressit, J. L. (ed.) Biogeography and Ecology of New Guinea. The Hague: Junk.Google Scholar
Lonsdale, P. 1978. Ecuadorian subduction system. AM ASSOC PET GEOL BULL 62, 2454–77.Google Scholar
Lonsdale, P. & Klitgord, K. 1978. Structure and tectonic history of the eastern Panama Basin. GEOL SOC AM BULL 89, 981–99.2.0.CO;2>CrossRefGoogle Scholar
Luhr, J. & Prestegaard, K. L. 1988. Caldera formation at Volcan Colima, Mexico, by a large Holocene volcanic debris avalanche. J VOLCANOL GEOTHERM RES 35, 335–48.CrossRefGoogle Scholar
Mahaney, W. C., Barendregt, R. W. & Vortisch, W. 1989. Quaternary glaciations and palaeoclimate of Mount Kenya, East Africa. In Oerlemans, J. (ed) Glacier Fluctuations and Climatic Change, 1335. Dordrecht: Kluwer.CrossRefGoogle Scholar
Martinez, A. 19291933. Contribuciones para el conocimiento geológica de la region volcanica del Ecuador. ANN UNIV CENT (QUITO), 4349.Google Scholar
Meierding, T. C. 1982. Late Pleistocene glacial equilibrium-line in the Colorado Front Range: A comparison of methods. QUATERNARY RES 18, 289310.CrossRefGoogle Scholar
Mercer, J. H. 1982. Holocene glacier variations in southern Patagonia. STRIAE 18, 3540.Google Scholar
Mercer, J. H. & Palacios, O. 1977. Radiocarbon dating of the last glaciation in Peru. GEOLOGY 5, 600604.2.0.CO;2>CrossRefGoogle Scholar
Meyer, H. 1907. In den Höchander Von Ecuador. Berlin:—.Google Scholar
Middleton, G. V. & Hampton, M. A. 1976. Subaqueous sediment transport and deposition by sediment gravity flows. In Stanley, D. J. & Swift, D. J. (eds) Marine Sediment Transport and Environmental Management. New York: Wiley.Google Scholar
Mullineaux, D. R., Miller, C. D. & Harlow, D. 1976. Reconnaissance study of volcanic hazards from Cotopaxi volcano, ECUADOR. US GEOL SURV PROJ REP (IR)EC-5.CrossRefGoogle Scholar
Murcia, A. 1982. El volcanismo plio-cuaternario de Colombia. INGEOMINAS PUBL GEOL ESPEC 10, 117.Google Scholar
Peccerillo, A. and Taylor, S. R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. CONTRIB MINERAL PETROL SB, 63–81.Google Scholar
Pennington, W. P. 1981. Subduction of the eastern Panama Basin and seismotectonics of northwestern South America. J GEOPHYS RES 86, 10753–70.CrossRefGoogle Scholar
Pilger, R. 1981. Plate reconstructions, aseismic ridges, and low-angle subduction beneath the Andes. GEOL SOC AM BULL 92, 448–56.2.0.CO;2>CrossRefGoogle Scholar
Porter, S. C. 1981. Pleistocene glaciation in the southern Lake District of Chile, QUATERNARY RES 16, 263292.CrossRefGoogle Scholar
Pourrut, P. 1983. Los climas del Ecuador-Fundamentos explicativos. CENT ECUATORIANO INVEST GEOGR: DOC INVEST 4, 741.Google Scholar
Randel, R. P. & Lozada, F. 1976. Mapa geológico del Ecuador, Hoja 69, Chimborazo. Quito: Dirección General de Geología y Minas.Google Scholar
Reiss, W. & Stubel, A. 18921898. Reisen in Sudamerika. Das Hòchgebirge der Republik Ecuador, Petrographische Untersuchungen, Vol. 1, West-Cordillere; Vol. 2, OstCordillere. Berlin: Asher.Google Scholar
Robin, C. and Boudal, C. 1987. A gigantic Bezymianny-type event at the beginning of modern Volcan Popocatepetl. J VOLCANOL GEOTHERM RES 31, 115–30.CrossRefGoogle Scholar
Rothlisberger, F. 1987. 10000 Jähre Gletschergeschichte der Erde. Aarau: Sauerlander.Google Scholar
Rothlisberger, F. & Schneebeli, W. 1979. Genesis of lateral moraine complexes demonstrated by fossil soils and trunks, indicators of palaeoclimatic fluctuations. In Schluchter, Ch. (ed.) Moraines and Vanes, 387419. Rotterdam: Balkema.Google Scholar
Sauer, W. 1965. Geologîa del Ecuador. Quito: Editorial del Ministerio de Educatión.Google Scholar
Shackleton, N. J. & Opdyke, N. D. 1973. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28–238: oxygen isotope temperatures and ice volumes on a 105 and 106 year scale. QUATERNARY RES 3, 3955.CrossRefGoogle Scholar
Schubert, C. 1988. Climatic changes during the last glacial maximum in Northern South America and the Caribbean: a review. INTERCIENCIA 13, 128–37.Google Scholar
Siebert, L. 1984. Large volcanic debris avalanches: characteristics of source areas, deposits and associated eruptions. J VOLCANOL GEOTHERM RES 22, 163–97.CrossRefGoogle Scholar
Sturm, M. & Matter, A. 1978. Turbidites and varves in Lake Brienz (Switzerland): deposition of clastic detritus by density currents. In Matter, A. & Tucker, M. E. (eds) MODERN AND ANCIENT LAKE SEDIMENT. SPEC PUBL INT ASSOC SEDIMENT 2, 147–68.CrossRefGoogle Scholar
Sugden, D. E. & John, B. S. 1976. Glaciers and Landscape. London: Arnold.Google Scholar
Thouret, J. C. & Van der Hammen, T. 1981. Una secuencia Holocénica y Tardiglacial en la Cordillera Central de Colombia. REV CIAF (BOGOTÁ) 6, 609–34.Google Scholar
Tricart, J. 1974. Existence de périodes séches du Quaternaire en Amazonie et dans les regions voisines. REV GEOMORPHOL DYN 23, 145158.Google Scholar
Van der Hammen, T., Barelds, J., De Jong, H. & De Veere, A. 1981. Glacial sequence and environmental history in the Sierra Nevada del Cocuy, (Colombia). PALAEOGEOGR, PALAEOCLIMATOL, PALAEOECOL 32, 247340.CrossRefGoogle Scholar
Vera, R. & Lopez, R. 1986. El origen de la Cangahua. PAISAJES GEOGR (QUITO) 16, 21–8.Google Scholar
Voight, B., Glicken, H., Janda, R. & Douglas, P. 1983. Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980. GEOTECHNIQUE 33, 243–73.CrossRefGoogle Scholar
Whymper, E. 1892. Travels Amongst the Great Andes of the Equator. London: Scribner.CrossRefGoogle Scholar
Wilson, M. 1989. Igneous Petrogenesis. London: Unwin Hyman.CrossRefGoogle Scholar
Wörner, G.Harmon, R. S., Davidson, J., Moorbath, S., Turner, D. L., McMillan, N., Nye, C., Lopez-Escobar, L. & Moreno, H. 1988. The Nevados de Payachata volcanic region (18°S/69°W N. Chile). I. Geological, geochemical and isotopic observations. BULL VOLCANOL 50, 287303.CrossRefGoogle Scholar