Hostname: page-component-76dd75c94c-sgvz2 Total loading time: 0 Render date: 2024-04-30T07:22:54.261Z Has data issue: false hasContentIssue false

VEGETATION COMPOSITION, STRUCTURE AND PATTERNS OF DIVERSITY: A CASE STUDY FROM THE TROPICAL WET EVERGREEN FORESTS OF THE WESTERN GHATS, INDIA

Published online by Cambridge University Press:  01 November 2008

A. Giriraj
Affiliation:
Forestry and Ecology Division, National Remote Sensing Agency, Balanagar, Hyderabad 500 037, India. E-mail for correspondence: gudugiri@yahoo.com Present address: Department of Biogeography, Universität Bayreuth, Bayreuth 95440, Germany.
M. S. R. Murthy
Affiliation:
Forestry and Ecology Division, National Remote Sensing Agency, Balanagar, Hyderabad 500 037, India. E-mail for correspondence: gudugiri@yahoo.com
B. R. Ramesh
Affiliation:
Department of Botany, French Institute of Pondicherry, 11 St. Louis Street, P.B. 33, Pondicherry 605 001, India.
Get access

Abstract

The composition, abundance, population structure and distribution patterns of the woody species having a girth at breast height of ≥ 10 cm were investigated in the tropical wet evergreen forests of the Kalakad-Mundanthurai Tiger Reserve in the southern Western Ghats, India. A 3 ha plot was established with an altitudinal range of 1170 to 1306 m. In the study plot 5624 individuals (mean density 1875 ha−1) covering 68 woody species belonging to 52 genera and 27 families were enumerated. The mean basal area was 47.01 m2 ha–1 and the Shannon and Simpson diversity indices were 4.89 and 0.95, respectively. Of these woody species nearly 51% are endemic to the Western Ghats. The four dominant species, Cullenia exarillata, Palaquium ellipticum, Aglaia bourdillonii and Myristica dactyloides, account for 34% of the trees and 67% of the basal area, and therefore constitute the main structure of the forest. Within this forest type, five species assemblages corresponding to altitudinal gradient were identified using correspondence analysis. Management of such mid elevation evergreen forests necessarily depends on knowledge of recognisable community types and their environmental variables. The present study provides essential background for formulating strategies for sustainable conservation of forest communities at the local level.

Type
Articles
Copyright
Copyright © Trustees of the Royal Botanic Garden Edinburgh 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amarnath, G., Murthy, M. S. R., Britto, S. J., Rajashekar, G. & Dutt, C. B. S. (2003). Diagnostic analysis of conservation zones using remote sensing and GIS techniques in wet evergreen forests of Western Ghats – An ecological hotspot, Tamil Nadu, India. Biodivers. Conserv. 12: 23312359.CrossRefGoogle Scholar
Ayyappan, N. & Parthasarathy, N. (1999). Biodiversity inventory of trees in a large-scale permanent plot of tropical evergreen forest at Varagalaiar, Anamalais, Western Ghats, India. Biodivers. Conserv. 8: 15331554.CrossRefGoogle Scholar
Colwell, R. K. (1997). EstimateS: Statistical estimation of species richness and shared species from samples. Version 5. User's Guide and application. Storrs, CT: University of Connecticut.Google Scholar
Condit, R. (1996). Defining and mapping vegetation types in megadiverse tropical forests. Trends Ecol. Evol. 11: 45.CrossRefGoogle ScholarPubMed
Couteron, P., Pelissier, R., Mapaga, D., Molino, J. F. & Teillier, L. (2003). Drawing ecological insights from a management-oriented forest inventory in French Guiana. Forest Ecol. Manag. 172: 89108.CrossRefGoogle Scholar
Crow, T. R. (1980). A rain forest chronicle: a 30-year record of change in structure and composition at El Verde, Puerto Rico. Biotropica 12: 4245.CrossRefGoogle Scholar
Curtis, J. T. & McIntosh, R. P. (1950). The interrelations of certain analytic and synthetic phytosociological characters. Ecology 31: 434455.CrossRefGoogle Scholar
Dawkins, H. C. (1959). The volume increment of natural tropical high forest and limitations of improvements. Empire Forest Rev. 38: 175180.Google Scholar
Devy, M. S. & Davidar, P. (2001). Effects of selective felling on the butterflies assemblage in wet forest of Kalakad-Mundanthurai Tiger Reserve: conservation implications. Current Science 80: 400405.Google Scholar
Edwards, P. & Grubb, P. (1977). Studies of mineral cycling in a montane rain forest in New Guinea. The distribution of organic matter in the vegetation and soil. J. Ecol. 11: 943969.CrossRefGoogle Scholar
Elouard, C. & Krishnan, R. M. (1999). Assessment of forest biological diversity. A FAO training course. 2. Case study in India. Pondy Papers in Ecology. Institut Français de Pondichéry.Google Scholar
Ferraz, G., Russell, G. J., Stouffer, P. C., Bierregaard, R. O., Pimm, S. L. & Lovejoy, T. E. (2004). Rates of species loss from Amazonian forest fragments. Proc. Natl. Acad. Sci. U.S.A. 100: 1406914073.CrossRefGoogle Scholar
Folster, H., Salas, G. D. E. & Khana, P. (1976). A tropical evergreen forest site with perched water table, Magdalena Valley, Columbia. Biomass and bioelement inventory of primary and secondary vegetation. Oecologia Plantarum 11: 297320.Google Scholar
Ganesh, T. & Davidar, P. (2001). Dispersal modes of tree species in the wet forests of Southern Western Ghats. Current Science 80: 394399.Google Scholar
Ganesh, T. & Devy, M. S. (2006). Interactions between non-flying mammals and flowers of Cullenia exarillata Robyns (Bombacaceae), a canopy tree from the wet forests of Western Ghats, India. Current Science 90: 16741679.Google Scholar
Ganesh, T., Ganesan, M., Devy, S., Davidar, P. & Bawa, K. S. (1996). Assessment of plant biodiversity at a mid-elevation evergreen forest of Kalakad-Mundanthurai Tiger Reserve, Western Ghats, India. Current Science 71: 379392.Google Scholar
Gentry, A. H. (1990). Floristic similarities and differences between southern Central America and Upper and Central Amazonia. In: Gentry, A. H. (ed.) Four Neotropical Rainforests, pp. 141157. New Haven, CT: Yale University Press.Google Scholar
Giriraj, A. (2006). Spatial characterization and conservation prioritization in tropical evergreen forests of Western Ghats, Tamil Nadu using geoinformatics. PhD thesis, Bharathidasan University, Tamil Nadu.Google Scholar
Hartshorn, G. S. (1990). An overview of neotropical forest dynamics. In: Gentry, A. H. (ed.) Four Neotropical Rainforests, pp. 585599. New Haven, CT: Yale University Press.Google Scholar
Henry, A. N., Kumari, G. R. & Chitra, V. (1987). Flora of Tamil Nadu, India ser. 1: Analysis, vol. 2. Coimbatore: Botanical Survey of India.Google Scholar
Henry, A. N., Chitra, V. & Balakrishnan, N. P. (1989). Flora of Tamil Nadu, India ser. 1: Analysis, vol. 3. Coimbatore: Botanical Survey of India.Google Scholar
Jacobs, M. (1987). The Tropical Rain Forest. New York: Springer-Verlag.Google Scholar
Johnsingh, A. J. T. (2001). The Kalakad-Mundanthurai Tiger Reserve: a global heritage of biological diversity. Current Science 80: 378388.Google Scholar
Johnston, M. & Gillman, M. (1995). Tree population studies in low-diversity forests, Guyana I. Floristic composition and stand structure. Biodivers. Conserv. 4: 339362.CrossRefGoogle Scholar
Kato, R., Tadaki, Y. & Ogawa, H. (1978). Plant biomass and growth increment studies in Pasoh Forest Reserve. Malayan Nat. J. 30: 211224.Google Scholar
Keel, S. H. K. & Prance, G. T. (1979). Studies of the vegetation of a white-sand black-water igapo (Rio Negro, Brazil). Acta Amazonica 9: 645655.CrossRefGoogle Scholar
Krebs, J. R. (1978). Ecology: The Experimental Analysis of Distribution and Abundance. New York: Harper and Row.Google Scholar
Laurance, W. F. (1999). Reflections on the tropical deforestation crisis. Biol. Conserv. 91: 109118.CrossRefGoogle Scholar
Leigh, E. L. Jr., Rand, A. S. & Windsor, D. M. (1985). The Ecology of a Tropical Forest: Seasonal Rhythms and Long-term Changes. Washington, DC: Smithsonian Institution Press.Google Scholar
Lugo, A. E. (1988). Estimating reductions in the diversity of tropical forest species. In: Wilson, E. O. & Peter, F. M. (eds) Biodiversity, pp. 5870. Washington, DC: National Academic Press.Google Scholar
Manokaran, N. & Kochummen, K. M. (1987). Recruitment, growth and mortality of tree species in a lowland dipterocarp forest in Peninsular Malaysia. J. Trop. Ecol. 3: 315330.CrossRefGoogle Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403: 853858.CrossRefGoogle ScholarPubMed
Nair, N. C. & Henry, A. N. (1983). Flora of Tamil Nadu, India ser. 1: Analysis, vol. 1. Coimbatore: Botanical Survey of India.Google Scholar
Nayar, M. P. (1996). Hotspots of Endemic Plants of India, Nepal and Bhutan. Thiruvananthapuram: Tropical Botanical Garden and Research Institute.Google Scholar
Newbery, D. M., Campbell, E. J. F., Lee, Y. F., Ridsdale, C. E. & Still, M. J. (1992). Primary lowland Dipterocarp forest at Danum valley, Sabah, Malaysia: structure, relative abundance and family composition. Phil. Trans. Royal Soc. London, B 335: 341356.Google Scholar
Nicholson, D. (1965). A review of natural regeneration in the Dipterocarp forests of Sabah. Malayan Nat. J. 28: 426.Google Scholar
Novacek, M. J. & Cleland, E. E. (2001). The current biodiversity extinction event: scenarios for mitigation and recovery. Proc. Natl. Acad. Sci. U.S.A. 98: 54665470.CrossRefGoogle ScholarPubMed
Okali, D. U. U. & Ola-Adams, B. A. (1987). Tree population changes in treated rain forest at Omo Reserve, south-western Nigeria. J. Trop. Ecol. 3: 291313.CrossRefGoogle Scholar
Parmesan, C. & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 3742.CrossRefGoogle ScholarPubMed
Parthasarathy, N. (1999). Tree diversity and distribution in undisturbed and human- impacted sites of tropical wet evergreen forest in southern Western Ghats, India. Biodivers. Conserv. 8: 13651381.CrossRefGoogle Scholar
Parthasarathy, N. (2001). Changes in forest composition and structure in three sites of tropical evergreen forest around Sengaltheri, Western Ghats. Current Science 80: 389393.Google Scholar
Parthasarathy, N., Kinhal, V. & Kumar, L. P. (1992). Plant species diversity and human impacts in the tropical wet evergreen forests of Southern Western Ghats. In: Indo-French Workshop on Tropical Forest Ecosystems: Natural Functioning and Anthropogenic Impact, 2627 November, French Institute, Pondicherry.Google Scholar
Pascal, J. P. (1984). Les forêts denses humides sempervirentes des ghâts occidentaux de l'lnde: écologie, structure, floristique, sucession. Travaux de la Section Scientific et Technique, Tome XX, Institut Français de Pondichéry.Google Scholar
Pascal, J. P. (1988). Wet Evergreen Forests of the Western Ghats of India: Ecology, Structure, Floristic Composition and Succession. Institut Français de Pondichéry.Google Scholar
Pascal, J. P. & Pelissier, R. (1996). Structure and floristic composition of a tropical evergreen forest in south-west India. J. Trop. Ecol. 12: 191214.CrossRefGoogle Scholar
Pelissier, R. & Riera, B. (1993). Dix ans de dynamique d'une forêt dense humide de Guyana Francaise. Revue d'Ecologie (Terre et Vie) 48: 2133.Google Scholar
Pelissier, R., Dray, S. & Sabatier, D. (2002). Within plot relationship between tree species occurrences and hydrological soil constraints: an example in French Guiana investigated through canonical correspondence analysis. Plant Ecol. 162: 143156.CrossRefGoogle Scholar
Phillips, O. L., Vargas, P. N., Monteagudo, A. L., Cruz, A. P., Zans, M. E. C., Sanchez, W. G., Yli-Halla, M. & Rose, S. (2003). Habitat association among Amazonian tree species: a landscape-scale approach. J. Ecol. 91: 757775.CrossRefGoogle Scholar
Poore, M. E. D. (1968). Studies in Malaysian rain forest. I. The forest on Triassic sediments in Jengka forest reserve. J. Ecol. 56: 143196.CrossRefGoogle Scholar
Pounds, J. A., Fogden, M. L. P. & Campbell, J. H. (1999). Biological response to climate change on a tropical mountain. Nature 398: 611615.CrossRefGoogle Scholar
Ramesh, B. R. (1989). The Evergreen Forests of Biligirirangan Hills (Ecology, Structure and Floristic Composition). University of Madras.Google Scholar
Ramesh, B. R. & Pascal, J. P. (1997). Atlas of Endemics of the Western Ghats (India). Institut Français de Pondichéry.Google Scholar
Ramesh, B. R. & Swaminath, M. H. (1999). Assessment and conservation of forest biodiversity in the Western Ghats of Karnataka, India. Final report on a three-year project conducted in collaboration with the Karnataka Forest Department. Funded by the Fonds Français de l'Environnment Mondial.Google Scholar
Richards, P. W. (1996). The Tropical Rain Forest: An Ecological Study, 2nd edition. Cambridge: Cambridge University Press.Google Scholar
Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C. & Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. Nature 421: 5760.CrossRefGoogle ScholarPubMed
Sabatier, D., Grimaldi, M., Prevost, M. F., Guillaume, J., Godron, M., Dosso, M. & Curmi, M. (1997). The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest. Plant Ecol. 131: 81108.CrossRefGoogle Scholar
Shannon, C. E. & Weaver, W. (1949). A Mathematical Theory of Communication. University of Illinois Press.Google Scholar
Simon, J. L. (1986). Disappearing species, deforestation and data. New Scientist 15 May: 6063.Google Scholar
Simpson, E. H. (1949). Measurement of diversity. Nature 163: 688.CrossRefGoogle Scholar
Soepadmo, E. (1987). Structure, above ground biomass and floristic composition of forest formations at Gunung Janing Barat, Ulu Endau, Johore, Malaysia. Malayan Nat. J. 41: 275290.Google Scholar
Swaine, M. D., Lieberman, D. & Putz, F. E. (1987). The dynamics of tree populations in tropical forest: a review. J. Trop. Ecol. 3: 359366.CrossRefGoogle Scholar
Thioulouse, J., Chessel, D., Dolédec, S. & Olivier, J. M. (1997). ADE-4: a multivariate analysis and graphical display software. Stat. Comp. 7: 7583.CrossRefGoogle Scholar
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, J. C. et al. (2003). Extinction risk from climate change. Nature 427:145148.CrossRefGoogle Scholar
Uhl, C. & Murphy, P. G. (1981). Composition, structure and regeneration of a tierra firme forest in the Amazon basin of Venezuela. Trop. Ecol. 22: 219237.Google Scholar
Wilson, E. O. (1992). The Diversity of Life. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
Wilson, E. O. (2000). On the future of conservation biology. Conserv. Biol. 14: 14.CrossRefGoogle Scholar
Yamakura, I., Hagihara, A., Sukardjo, S. & Ogawa, H. (1990). Aboveground biomass of tropical rain forest stands in Indonesian Borneo. Vegetatio 68: 7182.CrossRefGoogle Scholar