Skip to main content
×
×
Home

The effect of transportation and lairage on faecal shedding and carcass contamination with Escherichia coli O157 and O26 in very young calves in New Zealand

  • P. Jaros (a1), A. L. Cookson (a1) (a2), A. Reynolds (a1), H. Withers (a2), R. Clemens (a2), G. Brightwell (a2), J. Mills (a2), J. Marshall (a1), D. J. Prattley (a1), D. M. Campbell (a3), S. Hathaway (a3) and N. P. French (a1) (a4)...
Abstract

The effect of transportation and lairage on the faecal shedding and post-slaughter contamination of carcasses with Escherichia coli O157 and O26 in young calves (4–7-day-old) was assessed in a cohort study at a regional calf-processing plant in the North Island of New Zealand, following 60 calves as cohorts from six dairy farms to slaughter. Multiple samples from each animal at pre-slaughter (recto-anal mucosal swab) and carcass at post-slaughter (sponge swab) were collected and screened using real-time PCR and culture isolation methods for the presence of E. coli O157 and O26 (Shiga toxin-producing E. coli (STEC) and non-STEC). Genotype analysis of E. coli O157 and O26 isolates provided little evidence of faecal–oral transmission of infection between calves during transportation and lairage. Increased cross-contamination of hides and carcasses with E. coli O157 and O26 between co-transported calves was confirmed at pre-hide removal and post-evisceration stages but not at pre-boning (at the end of dressing prior to chilling), indicating that good hygiene practices and application of an approved intervention effectively controlled carcass contamination. This study was the first of its kind to assess the impact of transportation and lairage on the faecal carriage and post-harvest contamination of carcasses with E. coli O157 and O26 in very young calves.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The effect of transportation and lairage on faecal shedding and carcass contamination with Escherichia coli O157 and O26 in very young calves in New Zealand
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The effect of transportation and lairage on faecal shedding and carcass contamination with Escherichia coli O157 and O26 in very young calves in New Zealand
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The effect of transportation and lairage on faecal shedding and carcass contamination with Escherichia coli O157 and O26 in very young calves in New Zealand
      Available formats
      ×
Copyright
Corresponding author
Author for correspondence: Patricia Jaros, E-mail: pjaros@inspire.net.nz
References
Hide All
1.Moxley, RA and Acuff, GR (2014) Peri- and postharvest factors in the control of Shiga toxin-producing Escherichia coli in beef. Microbiology Spectrum 2(6). doi: 10.1128/microbiolspec.EHEC-0017-2013.
2.Johnson, KE, Thorpe, CM and Sears, CL (2006) The emerging clinical importance of non-O157 Shiga toxin-producing Escherichia coli. Clinical Infectious Diseases 43(12), 15871595.
3.Gould, LH, et al. (2009) Hemolytic uremic syndrome and death in persons with Escherichia coli O157:H7 infection, foodborne diseases active surveillance network sites, 2000–2006. Clinical Infectious Diseases 49(10), 14801485.
4.Karmali, MA, Gannon, V and Sargeant, JM (2010) Verocytotoxin-producing Escherichia coli (VTEC). Veterinary Microbiology 140(3–4), 360370.
5.Bell, B, et al. (1994) A multistate outbreak of Escherichia coli O157:H7 – associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. Journal of the American Medical Association 272(17), 13491353.
6.Ethelberg, S, et al. (2009) Outbreak of non-O157 Shiga toxin-producing Escherichia coli infection from consumption of beef sausage. Clinical Infectious Diseases 48(8), e78e81.
7.Kassenborg, HD, et al. (2004) Farm visits and undercooked hamburgers as major risk factors for sporadic Escherichia coli O157:H7 infection: data from a case-control study in 5 FoodNet sites. Clinical Infectious Diseases 38(Supplement 3), S271S278.
8.Barkocy-Gallagher, GA, et al. (2003) Seasonal prevalence of Shiga toxin-producing Escherichia coli, including O157:H7 and non-O157 serotypes, and Salmonella in commercial beef processing plants. Journal of Food Protection 66, 19781986.
9.Bosilevac, JM, et al. (2005) Development and evaluation of an on-line hide decontamination procedure for use in a commercial beef processing plant. Journal of Food Protection 68(2), 265272.
10.Nou, X, et al. (2003) Effect of chemical dehairing on the prevalence of Escherichia coli O157:H7 and the levels of aerobic bacteria and enterobacteriaceae on carcasses in a commercial beef processing plant. Journal of Food Protection 66(11), 20052009.
11.Arthur, TM, et al. (2007) Transportation and lairage environment effects on prevalence, numbers, and diversity of Escherichia coli O157:H7 on hides and carcasses of beef cattle at processing. Journal of Food Protection 70(2), 280286.
12.Childs, KD, et al. (2006) Molecular characterization of Escherichia coli O157:H7 hide contamination routes: feedlot to harvest. Journal of Food Protection 69(6), 12401247.
13.Fegan, N, et al. (2009) The effects of transport and lairage on counts of Escherichia coli O157 in the feces and on the hides of individual cattle. Foodborne Pathogens and Disease 6(9), 11131120.
14.Cuesta Alonso, EP, Gilliland, SE and Krehbiel, CR (2007) Incidence and toxin production ability of Escherichia coli O157:H7 isolated from cattle trucks. Journal of Food Protection 70(10), 23832385.
15.Small, A, et al. (2002) Potential for the spread of Escherichia coli O157, Salmonella, and Campylobacter in the lairage environment at abattoirs. Journal of Food Protection 65(6), 931936.
16.Minihan, D, et al. (2003) An investigation on the effect of transport and lairage on the faecal shedding prevalence of Escherichia coli O157 in cattle. Journal of Veterinary Medicine Series B 50(8), 378382.
17.Stanford, K, et al. (2011) Effects of long- or short-haul transportation of slaughter heifers and cattle liner microclimate on hide contamination with Escherichia coli O157. Journal of Food Protection 74(10), 16051610.
18.Anonymous (2017). Verocytotoxin-producing E. coli (VTEC/STEC) confirmed by ERL in 2016. Available from https://surv.esr.cri.nz/PDF_surveillance/ERL/VTEC/VTEC_2016.pdf Accessed 19 March 2018.
19.Anonymous Beef+Lamb New Zealand (2016). Compendium of New Zealand Farm Facts. Available from http://www.beeflambnz.com/Documents/Information/nz-farm-facts-compendium-2016%20Web.pdf Accessed 28 March 2018. p. 17.
20.Jaros, P, et al. (2016) Nationwide prevalence and risk factors for faecal carriage of Escherichia coli O157 and O26 in very young calves and adult cattle at slaughter in New Zealand. Epidemiology & Infection 144(8), 17361747.
21.Anonymous (2015). Detection, isolation and identification of Escherichia coli O157:H7 from meat products and carcass and environmental sponges. Available from https://www.fsis.usda.gov/wps/wcm/connect/51507fdb-dded-47f7-862d-ad80c3ee1738/MLG-5.pdf?MOD=AJPERES Accessed 18 March 2018.
22.Perelle, S, et al. (2004) Detection by 5′-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world's most frequent clinical cases. Molecular and Cellular Probes 18(3), 185192.
23.Jaros, P, et al. (2014) Geographic divergence of bovine and human Shiga toxin-producing Escherichia coli O157:H7 genotypes, New Zealand. Emerging Infectious Diseases 20(12), 19801989.
24.PulseNet International. Molecular typing, PFGE protocols. Available at: http://www.pulsenetinternational.org/protocols/. Accessed 28 Dec 2013.
25.Applied Maths NV. BioNumerics® (version 6.6). In. Sint-Martens-Latem, Belgium: The universal platform for databasing and analysis of all biological data.
26.Simpson, EH (1949) Measurement of diversity. Nature 163(4148), 688.
27.Hammer, Ø Harper, DAT and Ryan, PD (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1), 9.
28.R Core Team (2012). R: A Language and Environment for Statistical Computing, 2.15.2 edn., Vienna, Austria: R Foundation for Statistical Computing.
29.Jaros, P, et al. (2013) A prospective case-control and molecular epidemiological study of human cases of Shiga toxin-producing Escherichia coli in New Zealand. BMC Infectious Diseases 13(1), 450.
30.Lahti, E, et al. (2003) Longitudinal study of Escherichia coli O157 in a cattle finishing unit. Applied and Environmental Microbiology 69(1), 554561.
31.Ahmad, A, Nagaraja, TG and Zurek, L (2007) Transmission of Escherichia coli O157:H7 to cattle by house flies. Preventive Veterinary Medicine 80(1), 7481.
32.McGee, P, et al. (2004) Horizontal transmission of Escherichia coli O157:H7 during cattle housing. Journal of Food Protection 67(12), 26512656.
33.Corrier, DE, Purdy, CW and Deloach, JR (1990) Effects of marketing stress on fecal excretion of Salmonella spp in feeder calves. American Journal of Veterinary Research 51(6), 866869.
34.Barham, AR, et al. (2002) Effects of the transportation of beef cattle from the feedyard to the packing plant on prevalence levels of Escherichia coli O157 and Salmonella spp. Journal of Food Protection 65(2), 280283.
35.Bach, SJ, et al. (2004) Long-haul transport and lack of preconditioning increases fecal shedding of Escherichia coli and Escherichia coli O157:H7 by calves. Journal of Food Protection 67(4), 672678.
36.Garber, LP, et al. (1995) Risk factors for fecal shedding of Escherichia coli O157:H7 in dairy calves. Journal of the American Veterinary Medical Association 207(1), 4649.
37.Nielsen, EM, et al. (2002) Influence of age, sex and herd characteristics on the occurrence of verocytotoxin-producing Escherichia coli O157 in Danish dairy farms. Veterinary Microbiology 88(3), 245257.
38.Cobbold, R and Desmarchelier, P (2002) Horizontal transmission of Shiga toxin-producing Escherichia coli within groups of dairy calves. Applied and Environmental Microbiology 68(8), 41484152.
39.Mather, AE, et al. (2008) Factors associated with cross-contamination of hides of Scottish cattle by Escherichia coli O157. Applied and Environmental Microbiology 74(20), 63136319.
40.Dewell, GA, et al. (2008) Impact of transportation and lairage on hide contamination with Escherichia coli O157 in finished beef cattle. Journal of Food Protection 71(6), 11141118.
41.Arthur, TM, et al. (2008) Source tracking of Escherichia coli O157:H7 and Salmonella contamination in the lairage environment at commercial US beef processing plants and identification of an effective intervention. Journal of Food Protection 71(9), 17521760.
42.Spencer, SEF, et al. (2015) ‘Super’ or just ‘above average’? Supershedders and the transmission of Escherichia coli O157:H7 among feedlot cattle. Journal of the Royal Society Interface 12(110), 9.
43.Arthur, TM, et al. (2009) Longitudinal study of Escherichia coli O157:H7 in a beef cattle feedlot and role of high-level shedders in hide contamination. Applied and Environmental Microbiology 75(20), 65156523.
44.Jacob, ME, Renter, DG and Nagaraja, TG (2010) Animal- and truckload-level associations between Escherichia coli O157:H7 in feces and on hides at harvest and contamination of preevisceration beef carcasses. Journal of Food Protection 73(6), 10301037.
45.Roberts, TA (1980) Contamination of meat: the effects of slaughter practices on the bacteriology of the red meat carcass. Journal of the Royal Society for the Promotion of Health 100(1), 39.
46.Arthur, TM, et al. (2004) Escherichia coli O157 prevalence and enumeration of aerobic bacteria, Enterobacteriaceae, and Escherichia coli O157 at various steps in commercial beef processing plants. Journal of Food Protection 67(4), 658665.
47.Arthur, TM, et al. (2002) Prevalence and characterization of non-O157 Shiga toxin-producing Escherichia coli on carcasses in commercial beef cattle processing plants. Applied and Environmental Microbiology 68(10), 48474852.
48.Bell, RG (1997) Distribution and sources of microbial contamination on beef carcasses. Journal of Applied Microbiology 82(3), 292300.
49.Hudson, WR, Mead, GC and Hinton, MH (1998) Assessing abattoir hygiene with a marker organism. Veterinary Record 142(20), 545547.
50.Biss, ME and Hathaway, SC (1996) Effect of pre-slaughter washing of lambs on the microbiological and visible contamination of the carcases. Veterinary Record 138(4), 8286.
51.Elramady, MG, et al. (2013) Synergistic effects of lactic acid and sodium dodecyl sulfate to decontaminate Escherichia coli O157:H7 on cattle hide sections. Foodborne Pathogens and Disease 10(7), 661663.
52.Koohmaraie, M, et al. (2007) Interventions to reduce/eliminate Escherichia coli O157:H7 in ground beef. Meat Science 77(1), 9096.
53.Sargeant, JM, et al. (2007) Pre-harvest interventions to reduce the shedding of E. coli O157 in the faeces of weaned domestic ruminants: a systematic review. Zoonoses and Public Health 54(6–7), 260277.
54.Bielaszewska, M, et al. (2007) Shiga toxin-mediated hemolytic uremic syndrome: time to change the diagnostic paradigm? PLoS ONE 2, e1024.
55.Ogura, Y, et al. (2017) Population structure of Escherichia coli O26:H11 with recent and repeated stx2 acquisition in multiple lineages. Microbial Genomics 3, 19.
56.Iguchi, A, et al. (2011) Wide distribution of O157-antigen biosynthesis gene clusters in Escherichia coli. PLoS ONE 6, e23250.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: -
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Jaros et al. supplementary material
Tables S1-S2 and Figures S1-S2

 Word (2.5 MB)
2.5 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed