Skip to main content Accessibility help
×
×
Home

Estimated cumulative incidence of West Nile virus infection in US adults, 1999–2010

  • L. R. PETERSEN (a1), P. J. CARSON (a2) (a3), B. J. BIGGERSTAFF (a1), B. CUSTER (a4), S. M. BORCHARDT (a2) (a5) (a6) and M. P. BUSCH (a4) (a7)...

Summary

West Nile virus (WNV) was first recognized in the USA in 1999. We estimated the cumulative incidence of WNV infection in the USA from 1999 to 2010 using recently derived age- and sex-stratified ratios of infections to WNV neuroinvasive disease (WNND) and the number of WNND cases reported to national surveillance. We estimate that over 3 million persons have been infected with WNV in the USA, with the highest incidence rates in the central plains states. These 3 million infections would have resulted in about 780 000 illnesses. A substantial number of WNV infections and illnesses have occurred during the virus' first decade in the USA.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimated cumulative incidence of West Nile virus infection in US adults, 1999–2010
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimated cumulative incidence of West Nile virus infection in US adults, 1999–2010
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimated cumulative incidence of West Nile virus infection in US adults, 1999–2010
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: L. R. Petersen, MD, MPH, Centers for Disease Control and Prevention, 3150 Rampart Road, Fort Collins, CO 80521, USA. (Email: lxp2@cdc.gov)

References

Hide All
1.Centers for Disease Control and Prevention. West Nile virus disease and other arboviral diseases – United States, 2010. Morbidity and Mortality Weekly Report 2011; 60: 10091013.
2.Zou, S, et al. West Nile fever characteristics among viremic persons identified through blood donor screening. Journal of Infectious Diseases 2010; 202: 13541361.
3.Mostashari, F, et al. Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. Lancet 2001; 358: 261264.
4.Boehmer, TK, et al. Use of hospital discharge data to evaluate notifiable disease reporting to Colorado's electronic disease reporting system. Public Health Reports 2011; 126: 100106.
5.Weber, IB, et al. Completeness of West Nile virus testing in patients with meningitis and encephalitis during an outbreak in Arizona, USA. Epidemiology and Infection. Published online: 29 November 2011. doi:10.1017/S0950268811002494.
6.Mandalakas, AM, et al. West Nile virus epidemic, northeast Ohio, 2002. Emerging Infectious Diseases 2005; 11: 17741777.
7.Schweitzer, BK, et al. Geographic factors contributing to a high seroprevalence of West Nile virus-specific antibodies in humans following an epidemic. Clinical and Vaccine Immunology 2006; 13: 314318.
8.Lindsey, NP, et al. Surveillance for human West Nile virus disease – United States, 1999–2008. Morbidity and Mortality Weekly Report. Surveillance Summaries 2010; 59: 117.
9.Busch, MP, et al. West Nile virus infections projected from blood donor screening data, United States, 2003. Emerging Infectious Diseases 2006; 12: 395402.
10.Carson, PJ, et al. Neuroinvasive disease and West Nile virus infection, North Dakota, USA, 1999–2008. Emerging Infectious Diseases 2012; 18: 684686.
11.Barber, LM, Schleier, JJ 3rd, Peterson, RK. Economic cost analysis of West Nile virus outbreak, Sacramento County, California, USA, 2005. Emerging Infectious Diseases 2010; 16: 480486.
12.De Groot, AS, et al. Rapid determination of HLA B*07 ligands from the West Nile virus NY99 genome. Emerging Infectious Diseases 2001; 7: 706713.
13.Gates, MC, Boston, RC. Irrigation linked to a greater incidence of human and veterinary West Nile virus cases in the United States from 2004 to 2006. Preventive Veterinary Medicine 2009; 89: 134137.
14.Eisen, L, et al. Irrigated agriculture is an important risk factor for West Nile virus disease in the hyperendemic Larimer-Boulder-Weld area of north central Colorado. Journal of Medical Entomology 2010; 47: 939951.
15.Turell, MJ, et al. An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile Virus. Journal of Medical Entomology 2005; 42: 5762.
16.Goddard, LB, et al. Vector competence of California mosquitoes for West Nile virus. Emerging Infectious Diseases 2002; 8: 13851391.
17.Ezenwa, VO, et al. Land cover variation and West Nile virus prevalence: patterns, processes, and implications for disease control. Vector Borne Zoonotic Diseases 2007; 7: 173180.
18.Walsh, MG. The role of hydrogeography and climate in the landscape epidemiology of West Nile virus in New York State from 2000 to 2010. PLoS One 2012; 7: e30620.
19.Shaman, J, Day, JF, Komar, N. Hydrologic conditions describe West Nile virus risk in Colorado. International Journal of Environmental Research and Public Health 2010; 7: 494508.
20.Allan, BF, et al. Ecological correlates of risk and incidence of West Nile virus in the United States. Oecologia 2009; 158: 699708.
21.Swaddle, JP, Calos, SE. Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect. PLoS One 2008; 3: e2488.
22.Liu, H, Weng, Q, Gaines, D. Geographic incidence of human West Nile virus in northern Virginia, USA, in relation to incidence in birds and variations in urban environment. Science of the Total Environment 2011; 409: 42354241.
23.Brown, HE, et al. Ecological factors associated with West Nile virus transmission, northeastern United States. Emerging Infectious Diseases 2008; 14: 15391545.
24.Rochlin, I, et al. Predictive mapping of human risk for West Nile virus (WNV) based on environmental and socioeconomic factors. PLoS One 2011; 6: e23280.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed