Skip to main content
×
×
Home

Patterns of direct and indirect contact between cattle and badgers naturally infected with tuberculosis

  • J. A. DREWE (a1), H. M. O'CONNOR (a1) (a2), N. WEBER (a3), R. A. McDONALD (a4) and R. J. DELAHAY (a5)...
Summary

Tuberculosis (TB) due to infection with Mycobacterium bovis is transmitted between cattle and badgers (Meles meles) in the UK and Ireland but it is unclear where or when transmission occurs. We investigated direct and indirect interactions between badgers and cattle using automated proximity loggers on animals and at badger latrines located on pasture, in an area of south-west England with a high-density badger population. Direct contacts (interactions within 1·4 m) between badgers and cattle at pasture were very rare (four out of >500 000 recorded animal-to-animal contacts) despite ample opportunity for interactions to occur. Indirect interactions (visits to badger latrines by badgers and cattle) were two orders of magnitude more frequent than direct contacts: 400 visits by badgers and 1700 visits by cattle were recorded. This suggests that indirect contacts might be more important than direct contacts in terms of disease transmission at pasture. The TB infection status of individual badgers (ascribed with 93% accuracy using three diagnostic tests) did not affect the frequency or duration of their visits to latrines located on pasture grazed by cattle. Nevertheless, there was wide variation in contact behaviour between individuals, which highlights the importance of understanding heterogeneity in contact patterns when developing strategies to control disease spread in wildlife and livestock.

Copyright
Corresponding author
*Author for correspondence: Dr J. A. Drewe, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK. (Email: jdrewe@rvc.ac.uk)
References
Hide All
1.Biek, R, et al. Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLoS Pathogens 2012; 8: e1003008.
2.Little, TW, Naylor, PF, Wilesmith, JW. Laboratory study of Mycobacterium bovis infection in badgers and calves. Veterinary Record 1982; 111: 550557.
3.Corner, LA, Murphy, D, Gormley, E. Mycobacterium bovis infection in the Eurasian badger (Meles meles): the disease, pathogenesis, epidemiology and control. Journal of Comparative Pathology 2011; 144: 124.
4.Clifton-Hadley, RS, Wilesmith, JW, Stuart, FA. Mycobacterium bovis in the European badger (Meles meles): epidemiological findings in tuberculous badgers from a naturally infected population. Epidemiology and Infection 1993; 111: 919.
5.Hutchings, MR, Harris, S. Quantifying the risks of TB infection to cattle posed by badger excreta. Epidemiology and Infection 1999; 122: 167173.
6.Roper, TJ, et al. Territorial marking with faeces in badgers (Meles meles): a comparison of boundary and hinterland latrine use. Behaviour 1993; 127: 289307.
7.Murhead, RH, Burns, KJ. Tuberculosis in wild badgers in Gloucestershire: epidemiology. Veterinary Record 1974; 95: 552555.
8.MAFF. Bovine tuberculosis in badgers. Third report by the Ministry of Agriculture, Fisheries and Food. London: MAFF, 1979.
9.Benham, PF, Broom, DM. Interactions between cattle and badgers at pasture with reference to bovine tuberculosis transmission. British Veterinary Journal 1989; 145: 226241.
10.Drewe, JA, et al. Performance of proximity loggers in recording intra- and inter-species interactions: a laboratory and field-based validation study. PLoS One 2012; 7: e39068.
11.Böhm, M, Hutchings, MR, White, PC. Contact networks in a wildlife-livestock host community: identifying high-risk individuals in the transmission of bovine TB among badgers and cattle. PLoS One 2009; 4: e5016.
12.Benham, PF, Broom, DM. Responses of dairy cows to badger urine and faeces on pasture with reference to bovine tuberculosis transmission. British Veterinary Journal 1991; 147: 517532.
13.Hutchings, MR, Harris, S. Effects of farm management practices on cattle grazing behaviour and the potential for transmission of bovine tuberculosis from badgers to cattle. Veterinary Journal 1997; 153: 1491462.
14.Rogers, LM, et al. Movement of badgers (Meles meles) in a high-density population: individual, population and disease effects. Proceedings of the Royal Society of London, Series B: Biological Sciences 1998; 265: 12691276.
15.Garnett, BT, Delahay, RJ, Roper, TJ. Ranging behaviour of European badgers (Meles meles) in relation to bovine tuberculosis (Mycobacterium bovis) infection. Applied Animal Behaviour Science 2005; 94: 331340.
16.Weber, N, et al. Denning behaviour of the European badger (Meles meles) correlates with bovine tuberculosis infection status. Behavioral Ecology and Sociobiology 2013; 67: 471479.
17.Woolhouse, ME, et al. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proceedings of the National Academy of Sciences USA 1997; 94: 338342.
18.Lloyd-Smith, JO, et al. Superspreading and the effect of individual variation on disease emergence. Nature 2005; 438: 355–9.
19.Perkins, SE, et al. Empirical evidence for key hosts in persistence of a tick-borne disease. International Journal of Parasitology 2003; 33: 909917.
20.Paull, SH, et al. From superspreaders to disease hotspots: linking transmission across hosts and space. Frontiers in Ecology and the Environment 2011; 10: 7582.
21.Krebs, CJ. Demographic changes in fluctuating populations of Microtus californicus. Ecological Monographs 1966; 36: 239273.
22.Delahay, RJ, et al. The spatio-temporal distribution of Mycobacterium bovis (bovine tuberculosis) infection in a high-density badger population. Journal of Animal Ecology 2000; 69: 428441.
23.Cheeseman, CL, Mallinson, PJ. Radio tracking in the study of bovine tuberculosis in badgers. In: Amlaner, CJ Jr., Macdonald, DW, eds. A Handbook on Biotelemetry and radio tracking. Oxford and New York: Pergamon Press, 1979: 649656.
24.Dalley, D, et al. Development and evaluation of a gamma-interferon assay for tuberculosis in badgers (Meles meles). Tuberculosis 2008; 88: 235243.
25.Chambers, MA, et al. Validation of the BrockTB stat-pak assay for detection of tuberculosis in Eurasian badgers (Meles meles) and influence of disease severity on diagnostic accuracy. Journal of Clinical Microbiology 2008; 46: 14981500.
26.Drewe, JA, et al. Diagnostic accuracy and optimal use of three tests for tuberculosis in live badgers. PLoS One 2010; 5: e11196.
27.Sauter, CM, Morris, RS. Behavioural studies on the potential for direct transmission of tuberculosis from feral ferrets (Mustela furo) and possums (Trichosurus vulpecula) to farmed livestock. New Zealand Veterinary Journal 1995; 43: 294300.
28.Kruuk, H. Spatial organization and territorial behaviour of the European badger Meles meles. Journal of Zoology 1978; 184: 119.
29.Delahay, RJ, et al. The use of marked bait in studies of the territorial organization of the European badger (Meles meles). Mammal Review 2000; 30: 7387.
30.Dohoo, I, Martin, W, Stryhn, H. Veterinary Epidemiologic Research, 2nd edn. Prince Edward Island, Canada: VER Inc., 2010.
31.Corner, LA. The role of wild animal populations in the epidemiology of tuberculosis in domestic animals: how to assess the risk. Veterinary Microbiology 2006; 112: 303312.
32.Garnett, BT, Delahay, RJ, Roper, TJ. Use of cattle farm resources by badgers (Meles meles) and risk of bovine tuberculosis (Mycobacterium bovis) transmission to cattle. Proceedings of the Royal Society of London, Series B: Biological Sciences 2002; 269: 1487–191.
33.Roper, TJ, Shepherdson, DJ, Davies, JM. Scent marking with faeces and anal secretion in the European Badger (Meles meles): Seasonal and spatial characteristics of latrine use in relation to territoriality. Behaviour 1986; 97: 94117.
34.Jenkins, HE, et al. The prevalence, distribution and severity of detectable pathological lesions in badgers naturally infected with Mycobacterium bovis. Epidemiology and Infection 2008; 136: 13501361.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 17
Total number of PDF views: 85 *
Loading metrics...

Abstract views

Total abstract views: 533 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th July 2018. This data will be updated every 24 hours.