Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T13:16:32.124Z Has data issue: false hasContentIssue false

Self-organised critical hot spots of criminal activity

Published online by Cambridge University Press:  07 July 2010

Centre d'Analyse et de Mathématique Sociales (CAMS, UMR 8557 CNRS – EHESS), Ecole des Hautes Etudes en Sciences Sociales, 54 Bd. Raspail, 75270 Paris Cedex 06, France email:
Centre d'Analyse et de Mathématique Sociales (CAMS, UMR 8557 CNRS – EHESS), Ecole des Hautes Etudes en Sciences Sociales, 54 Bd. Raspail, 75270 Paris Cedex 06, France email: Laboratoire de Physique Statistique (LPS, UMR 8550 CNRS – ENS – UPMC Univ. Paris 6 – Paris Diderot Paris 7), Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France email:


In this paper1 we introduce a family of models to describe the spatio-temporal dynamics of criminal activity. It is argued here that with a minimal set of mechanisms corresponding to elements that are basic in the study of crime, one can observe the formation of hot spots. By analysing the simplest versions of our model, we exhibit a self-organised critical state of illegal activities that we propose to call a warm spot or a tepid milieu2 depending on the context. It is characterised by a positive level of illegal or uncivil activity that maintains itself without exploding, in contrast with genuine hot spots where localised high level or peaks are being formed. Within our framework, we further investigate optimal policy issues under the constraint of limited resources in law enforcement and deterrence. We also introduce extensions of our model that take into account repeated victimisation effects, local and long range interactions, and briefly discuss some of the resulting effects such as hysteresis phenomena.

Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Bak, P. (1997) How Nature Works: The Science of Self Organised Criticality, Oxford University Press.Google Scholar
Becker, G. (1968) Crime and punishment: An economic approach. J. Polit. Econ. 76, 169217.CrossRefGoogle Scholar
Berk, R. (2008) How you can tell if the simulations in computational criminology are any good. J. Exp. Criminol. 4 (3), 289308.CrossRefGoogle Scholar
Bernasco, W. (2009) Modeling micro-level crime location choice: Application of the discrete choice framework to crime at places. J. Quant. Criminol. 26 (1), 113138.CrossRefGoogle Scholar
Bourguignon, F., Nunez, J. & Sanchez, F. (2003 a) A structural model of crime and inequality in Colombia. J. Eur Econ. Assoc. 12 (2–3), 440449.CrossRefGoogle Scholar
Bourguignon, F., Nunez, J. & Sanchez, F. (2003 b) What part of the income distribution does matter for explaining crime? The case of Colombia. J. Eur. Econ. Assoc. 1 (2–3), 440449.CrossRefGoogle Scholar
Brunel, N. & van Rossum, M. C. W. (2007) Lapicques 1907 paper: From frogs to integrate-and-fire. Bio. Cybern. 97 (5–6), 337339.CrossRefGoogle ScholarPubMed
Calvó-Armengol, A. & Zenou, Y. (2004) Social networks and crime decisions: The role of social structure in facilitating delinquent behavior. Int. Econ. Rev. 45, 939958.CrossRefGoogle Scholar
Campbell, M. & Ormerod, P. (1998) Social interactions and the dynamics of crime. Volterra Consulting Preprint. URL: Scholar
Chow, C., Gutkin, B., Hansel, D., Meunier, C. & Dalibard, J. (editors) (2004) Methods and Models in Neurophysics. Session LXXX, Lecture Notes of the Les Houches Summer School 2003, Elsevier.Google Scholar
Clarke, R. V. & Felson, M. (editors) (1993) Routine Activity and Rational Choice. Advances in Criminological Theory, Vol. 5, Transaction Books, New Brunswick, NJ.Google Scholar
Cohen, L. E. & Felson, M. (1979) Social change and crime rate trends: A routine activity approach. Am. Sociol. Rev. 44, 588608.CrossRefGoogle Scholar
Crane, J. (1991) The epidemic theory of ghettos and neighborhood effects on dropping out and teenage childbearing. Am. J. Sociol. 96 (5), 12261259.CrossRefGoogle Scholar
Eck, J. & Liu, L. (2008) Contrasting simulated and empirical experiments in crime. J. Exp. Criminol. 4, 195213.CrossRefGoogle Scholar
Glaeser, E. L., Sacerdote, B. & Scheinkman, J. A. (1996) Crime and social interactions. Q. J. Econ. 111, 507548.CrossRefGoogle Scholar
Gordon, M. B. (2010) A random walk in the literature on criminality: A partial and critical view on some statistical analyses and modeling approaches. Eur. J. Appl. Math. 21, 283306.CrossRefGoogle Scholar
Gordon, M. B., Iglesias, J. R., Semeshenko, V. & Nadal, J.-P. (2009a) Crime and punishment: The economic burden of impunity. Eur. Phys. J. B – Condens. Matter Complex Syst. 68 (1), 133144.CrossRefGoogle Scholar
Gordon, M. B., Nadal, J.-P., Phan, D. & Semeshenko, V. (2009b) Discrete choices under social influence: Generic properties. Math. Models Methods Appl. Sci. (M3AS) 19 (Supplementary Issue 1), 14411481.CrossRefGoogle Scholar
Groff, L. (2007) Simulation for theory testing and experimentation: An example using routine activity theory and street robbery. J. Quant. Criminol. 23 (2), 75103.CrossRefGoogle Scholar
Johnson, S. D., Summers, L. & Pease, K. (2009) Offender as forager? A direct test of the boost account of victimization. J. Quant. Criminol. 25 (2), 181200.CrossRefGoogle Scholar
Nadal, J.-P., Gordon, M. B., Semeshenko, V. & Iglesias, J. R. (2010) Modelling the individual and collective dynamics of the propensity to offend. Eur. J. Appl. Math. 21, 421440.CrossRefGoogle Scholar
Nadal, J.-P., Phan, D., Gordon, M. B. & Vannimenus, J. (2006) Multiple equilibria in a monopoly market with heterogeneous agents and externalities. Quant. Finance 5 (6), 557568.CrossRefGoogle Scholar
Nagin, D. & Paternoster, R. (1993) Enduring individual differences and rational choice theories of crime. Law Soc. Rev. 467.Google Scholar
Nuño, J. C., Herrero, M. A. & Primicerio, M. (2008) A triangle model of criminality. Physic. A: Stat. Mech. Appl. 387 (12), 29262936.CrossRefGoogle Scholar
Ormerod, P. (2005) Crime: Economic Incentives and Social Networks, Insitute of Economic Affairs, London.Google Scholar
Pease, K. (1998) Repeat victimization: Taking stock. Crime Detection and Prevention Series Paper 90. The Home Office: Police Research Group.Google Scholar
Pitcher, A. B. (2010) Adding police to a mathematical model of burglary. Eur. J. Appl. Math. 21, 401419.CrossRefGoogle Scholar
Sethna, J. P. (2009) Statistical Mechanics. Entropy, Order Parameters and Complexity, Oxford University Press.Google Scholar
Short, M. B., Brantingham, P. J., Bertozzi, A. L. & Tita, G. E. (2010) Dissipation and displacement of hotspots in reaction-diffusion models of crime. Proc. Natl. Acad. Sci. (PNAS) 107 (9), 39613965.CrossRefGoogle ScholarPubMed
Short, M., D'Orsogna, M., Pasour, V., Tita, G., Brantingham, P., Bertozzi, A. & Chayes, L. (2008) A statistical model of criminal behavior. Math. Models Methods Appl. Sci. (M3AS) 18 (Suppl.), 12491267.CrossRefGoogle Scholar