[1]
Agranovsky, M., Berenstein, C. & Kuchment, P. (1996) Approximation by spherical waves in *L*^{p}
-spaces. J. Geom. Anal.
6
(3), 365–383.

[2]
Agranovsky, M., Kuchment, P. & Quinto, E. T. (2007) Range descriptions for the spherical mean Radon transform. J. Funct. Anal.
248
(2), 344–386.

[3]
Agranovsky, M. L. & Quinto, E. T. (1996) Injectivity sets for the Radon transform over circles and complete systems of radial functions. J. Funct. Anal.
139
(2), 383–414.

[4]
Agranovsky, M. L. & Quinto, E. T. (2001) Geometry of stationary sets for the wave equation in
^{
n
}: The case of finitely supported initial data. Duke Math. J.
107
(1), 57–84.
[5]
Ambartsoumian, G., Gouia-Zarrad, R. & Lewis, M. A. (2010) Inversion of the circular Radon transform on an annulus. Inverse Problems
26
(10), 105015.

[6]
Ambartsoumian, G. & Krishnan, V. P. (2015) Inversion of a class of circular and elliptical Radon transforms. In: Complex Analysis and Dynamical Systems VI. Part 1, Contemp. Math., Vol. 653, Amer. Math. Soc., Providence, RI, pp. 1–12.

[7]
Ambartsoumian, G. & Kuchment, P. (2005) On the injectivity of the circular Radon transform. Inverse Problems
21
(2), 473–485.

[8]
Ambartsoumian, G. & Kuchment, P. (2006) A range description for the planar circular Radon transform. SIAM J. Math. Anal.
38
(2), 681–692.

[9]
Ambartsoumian, G. & Roy, S. (2016) Numerical inversion of a broken ray transform arising in single scattering optical tomography. IEEE Trans. Comput. Imaging
2
(2), 166–173.

[10]
Anastasio, M. A., Zhang, J., Sidky, E. Y., Zou, Y., Xia, D. & Pan, X. (2005) Feasibility of half-data image reconstruction in 3-d reflectivity tomography with a spherical aperture. IEEE Trans. Med. Imaging
24
(9), 1100–1112.

[11]
Andersson, L.-E. (1988) On the determination of a function from spherical averages. SIAM J. Math. Anal.
19
(1), 214–232.

[12]
Antipov, Y. A., Estrada, R. & Rubin, B. (2012) Method of analytic continuation for the inverse spherical mean transform in constant curvature spaces. J. Anal. Math.
118
(2), 623–656.

[13]
Rod Blais, J. A. & Provins, D. A. (2002) Spherical harmonic analysis and synthesis for global multiresolution applications. J. Geodesy
76
(1), 29–35.

[14]
Briggs, W. L., Henson, V. E. & McCormick, S. F. (2000) A Multigrid Tutorial, 2nd ed., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

[15]
Cheney, M. & Borden, B. (2009) Fundamentals of Radar Imaging, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 79, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

[16]
de Hoop, M. V. (2003) Microlocal analysis of seismic inverse scattering. In: Inside Out: Inverse Problems and Applications, Math. Sci. Res. Inst. Publ., Vol. 47, Cambridge Univ. Press, Cambridge, pp. 219–296.

[17]
Finch, D., Haltmeier, M. & Rakesh, (2007) Inversion of spherical means and the wave equation in even dimensions. SIAM J. Appl. Math.
68
(2), 392–412.

[18]
Finch, D., Patch, S. K. & Rakesh, (2004) Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal.
35
(5), 1213–1240.

[19]
Finch, D. & Rakesh, (2007) The spherical mean value operator with centers on a sphere. Inverse Problems
23
(6), S37–S49.

[20]
Gelfand, I. M., Gindikin, S. G. & Graev, M. I. (2003) Selected Topics in Integral Geometry, Vol. 220, Translations of Mathematical Monographs, American Mathematical Society, Providence, RI.

[21]
Golub, G. & Kahan, W. (1965) Calculating the singular values and pseudo-inverse of a matrix.
J. Soc. Indust. Appl. Math. Ser. B Numer. Anal.
2, 205–224.

[22]
Haltmeier, M. (2014) Universal inversion formulas for recovering a function from spherical means. SIAM J. Math. Anal.
46
(1), 214–232.

[23]
Hansen, P. C. (1987) The truncated SVD as a method for regularization. BIT
27
(4), 534–553.

[24]
Hristova, Y., Kuchment, P. & Nguyen, L. (2008) Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Problems
24
(5), 055006.

[25]
John, F. (2004) Plane Waves and Spherical Means Applied to Partial Differential Equations. Dover Publications, Inc., Mineola, NY.

[26]
Kalf, H. (1995) On the expansion of a function in terms of spherical harmonics in arbitrary dimensions. Bull. Belg. Math. Soc.
2
(4), 361–380.

[27]
Kuchment, P. & Kunyansky, L. (2008) Mathematics of thermoacoustic tomography. Eur. J. Appl. Math.
19
(2), 191–224.

[28]
Kunyansky, L. A. (2007) Explicit inversion formulae for the spherical mean Radon transform. Inverse Problems
23
(1), 373–383.

[29]
Kunyansky, L. A. (2007) A series solution and a fast algorithm for the inversion of the spherical mean Radon transform. Inverse Problems
23
(6), S11–S20.

[30]
Lin, V. Y. & Pinkus, A. (1993) Fundamentality of ridge functions. J. Approx. Theory
75
(3), 295–311.

[31]
Linz, P. (1985) Analytical and Numerical Methods for Volterra Equations, Vol. 7, SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

[32]
Louis, A. K. & Quinto, E. T. (2000) Local tomographic methods in sonar. In: Surveys on Solution Methods for Inverse Problems, Springer, Vienna, pp. 147–154.

[33]
Mensah, S. & Franceschini, É. (2007) Near-field ultrasound tomography. J. Acoust. Soc. Am.
121
(3–4), 1423–1433.

[34]
Nguyen, L. V. (2009) A family of inversion formulas in thermoacoustic tomography. Inverse Probl. Imaging
3
(4), 649–675.

[35]
Norton, S. T. (1980) Reconstruction of a two-dimensional reflecting medium over a circular domain: Exact solution. J. Acoust. Soc. Amer.
67
(4), 1266–1273.

[36]
Norton, S. J. & Linzer, M. (1984) Reconstructing spatially incoherent random sources in the nearfield: Exact inversion formulas for circular and spherical arrays. J. Acoust. Soc. Amer.
76
(6), 1731–1736.

[37]
Plato, R. (2012) The regularizing properties of the composite trapezoidal method for weakly singular Volterra integral equations of the first kind. Adv. Comput. Math.
36
(2), 331–351.

[38]
Polyanin, A. D. & Manzhirov, A. V. (2008) Handbook of Integral Equations, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL.

[39]
Quinto, E. T. (2006) Support theorems for the spherical Radon transform on manifolds. *Int. Math. Res. Not.* Art. ID 67205, 17.

[40]
Roy, S., Krishnan, V. P., Chandrashekar, P. & Vasudeva Murthy, A. S. (2015) An efficient numerical algorithm for the inversion of an integral transform arising in ultrasound imaging. J. Math. Imaging Vision
53
(1), 78–91.

[41]
Rubin, B. (2008) Inversion formulae for the spherical mean in odd dimensions and the Euler–Poisson–Darboux equation. Inverse Problems
24
(2), 025021.

[42]
Salman, Y. (2014) An inversion formula for the spherical mean transform with data on an ellipsoid in two and three dimensions. J. Math. Anal. Appl.
420
(1), 612–620.

[43]
Stefanov, P. & Uhlmann, G. (2009) Thermoacoustic tomography with variable sound speed. Inverse Problems
25
(7), 075011.

[44]
Stefanov, P. & Uhlmann, G. (2011) Thermoacoustic tomography arising in brain imaging. Inverse Problems
27
(4), 045004.

[45]
Tricomi, F. G. (1985) Integral Equations, Dover Publications, Inc., New York.

[46]
Volterra, V. (1959) Theory of Functionals and of Integral and Integro-Differential Equations. With a preface by G. C. Evans, a biography of Vito Volterra and a bibliography of his published works by E. Whittaker, Dover Publications, Inc., New York.

[47]
Weiss, R. (1972) Product integration for the generalized Abel equation. Math. Comp.
26
(117), 177–190.

[48]
Xu, M. & Wang, L. V. (2002) Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans. Med. Imaging
21
(7), 814–822.