Skip to main content

Image reconstruction from radially incomplete spherical Radon data


We study inversion of the spherical Radon transform with centres on a sphere (the data acquisition set). Such inversions are essential in various image reconstruction problems arising in medical, radar and sonar imaging. In the case of radially incomplete data, we show that the spherical Radon transform can be uniquely inverted recovering the image function in spherical shells. Our result is valid when the support of the image function is inside the data acquisition sphere, outside that sphere, as well as on both sides of the sphere. Furthermore, in addition to the uniqueness result, our method of proof provides reconstruction formulas for all those cases. We present a robust computational algorithm and demonstrate its accuracy and efficiency on several numerical examples.

Hide All
[1] Agranovsky, M., Berenstein, C. & Kuchment, P. (1996) Approximation by spherical waves in Lp-spaces. J. Geom. Anal. 6 (3), 365383.
[2] Agranovsky, M., Kuchment, P. & Quinto, E. T. (2007) Range descriptions for the spherical mean Radon transform. J. Funct. Anal. 248 (2), 344386.
[3] Agranovsky, M. L. & Quinto, E. T. (1996) Injectivity sets for the Radon transform over circles and complete systems of radial functions. J. Funct. Anal. 139 (2), 383414.
[4] Agranovsky, M. L. & Quinto, E. T. (2001) Geometry of stationary sets for the wave equation in n: The case of finitely supported initial data. Duke Math. J. 107 (1), 5784.
[5] Ambartsoumian, G., Gouia-Zarrad, R. & Lewis, M. A. (2010) Inversion of the circular Radon transform on an annulus. Inverse Problems 26 (10), 105015.
[6] Ambartsoumian, G. & Krishnan, V. P. (2015) Inversion of a class of circular and elliptical Radon transforms. In: Complex Analysis and Dynamical Systems VI. Part 1, Contemp. Math., Vol. 653, Amer. Math. Soc., Providence, RI, pp. 112.
[7] Ambartsoumian, G. & Kuchment, P. (2005) On the injectivity of the circular Radon transform. Inverse Problems 21 (2), 473485.
[8] Ambartsoumian, G. & Kuchment, P. (2006) A range description for the planar circular Radon transform. SIAM J. Math. Anal. 38 (2), 681692.
[9] Ambartsoumian, G. & Roy, S. (2016) Numerical inversion of a broken ray transform arising in single scattering optical tomography. IEEE Trans. Comput. Imaging 2 (2), 166173.
[10] Anastasio, M. A., Zhang, J., Sidky, E. Y., Zou, Y., Xia, D. & Pan, X. (2005) Feasibility of half-data image reconstruction in 3-d reflectivity tomography with a spherical aperture. IEEE Trans. Med. Imaging 24 (9), 11001112.
[11] Andersson, L.-E. (1988) On the determination of a function from spherical averages. SIAM J. Math. Anal. 19 (1), 214232.
[12] Antipov, Y. A., Estrada, R. & Rubin, B. (2012) Method of analytic continuation for the inverse spherical mean transform in constant curvature spaces. J. Anal. Math. 118 (2), 623656.
[13] Rod Blais, J. A. & Provins, D. A. (2002) Spherical harmonic analysis and synthesis for global multiresolution applications. J. Geodesy 76 (1), 2935.
[14] Briggs, W. L., Henson, V. E. & McCormick, S. F. (2000) A Multigrid Tutorial, 2nd ed., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
[15] Cheney, M. & Borden, B. (2009) Fundamentals of Radar Imaging, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 79, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
[16] de Hoop, M. V. (2003) Microlocal analysis of seismic inverse scattering. In: Inside Out: Inverse Problems and Applications, Math. Sci. Res. Inst. Publ., Vol. 47, Cambridge Univ. Press, Cambridge, pp. 219296.
[17] Finch, D., Haltmeier, M. & Rakesh, (2007) Inversion of spherical means and the wave equation in even dimensions. SIAM J. Appl. Math. 68 (2), 392412.
[18] Finch, D., Patch, S. K. & Rakesh, (2004) Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal. 35 (5), 12131240.
[19] Finch, D. & Rakesh, (2007) The spherical mean value operator with centers on a sphere. Inverse Problems 23 (6), S37S49.
[20] Gelfand, I. M., Gindikin, S. G. & Graev, M. I. (2003) Selected Topics in Integral Geometry, Vol. 220, Translations of Mathematical Monographs, American Mathematical Society, Providence, RI.
[21] Golub, G. & Kahan, W. (1965) Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2, 205224.
[22] Haltmeier, M. (2014) Universal inversion formulas for recovering a function from spherical means. SIAM J. Math. Anal. 46 (1), 214232.
[23] Hansen, P. C. (1987) The truncated SVD as a method for regularization. BIT 27 (4), 534553.
[24] Hristova, Y., Kuchment, P. & Nguyen, L. (2008) Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Problems 24 (5), 055006.
[25] John, F. (2004) Plane Waves and Spherical Means Applied to Partial Differential Equations. Dover Publications, Inc., Mineola, NY.
[26] Kalf, H. (1995) On the expansion of a function in terms of spherical harmonics in arbitrary dimensions. Bull. Belg. Math. Soc. 2 (4), 361380.
[27] Kuchment, P. & Kunyansky, L. (2008) Mathematics of thermoacoustic tomography. Eur. J. Appl. Math. 19 (2), 191224.
[28] Kunyansky, L. A. (2007) Explicit inversion formulae for the spherical mean Radon transform. Inverse Problems 23 (1), 373383.
[29] Kunyansky, L. A. (2007) A series solution and a fast algorithm for the inversion of the spherical mean Radon transform. Inverse Problems 23 (6), S11S20.
[30] Lin, V. Y. & Pinkus, A. (1993) Fundamentality of ridge functions. J. Approx. Theory 75 (3), 295311.
[31] Linz, P. (1985) Analytical and Numerical Methods for Volterra Equations, Vol. 7, SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
[32] Louis, A. K. & Quinto, E. T. (2000) Local tomographic methods in sonar. In: Surveys on Solution Methods for Inverse Problems, Springer, Vienna, pp. 147154.
[33] Mensah, S. & Franceschini, É. (2007) Near-field ultrasound tomography. J. Acoust. Soc. Am. 121 (3–4), 14231433.
[34] Nguyen, L. V. (2009) A family of inversion formulas in thermoacoustic tomography. Inverse Probl. Imaging 3 (4), 649675.
[35] Norton, S. T. (1980) Reconstruction of a two-dimensional reflecting medium over a circular domain: Exact solution. J. Acoust. Soc. Amer. 67 (4), 12661273.
[36] Norton, S. J. & Linzer, M. (1984) Reconstructing spatially incoherent random sources in the nearfield: Exact inversion formulas for circular and spherical arrays. J. Acoust. Soc. Amer. 76 (6), 17311736.
[37] Plato, R. (2012) The regularizing properties of the composite trapezoidal method for weakly singular Volterra integral equations of the first kind. Adv. Comput. Math. 36 (2), 331351.
[38] Polyanin, A. D. & Manzhirov, A. V. (2008) Handbook of Integral Equations, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL.
[39] Quinto, E. T. (2006) Support theorems for the spherical Radon transform on manifolds. Int. Math. Res. Not. Art. ID 67205, 17.
[40] Roy, S., Krishnan, V. P., Chandrashekar, P. & Vasudeva Murthy, A. S. (2015) An efficient numerical algorithm for the inversion of an integral transform arising in ultrasound imaging. J. Math. Imaging Vision 53 (1), 7891.
[41] Rubin, B. (2008) Inversion formulae for the spherical mean in odd dimensions and the Euler–Poisson–Darboux equation. Inverse Problems 24 (2), 025021.
[42] Salman, Y. (2014) An inversion formula for the spherical mean transform with data on an ellipsoid in two and three dimensions. J. Math. Anal. Appl. 420 (1), 612620.
[43] Stefanov, P. & Uhlmann, G. (2009) Thermoacoustic tomography with variable sound speed. Inverse Problems 25 (7), 075011.
[44] Stefanov, P. & Uhlmann, G. (2011) Thermoacoustic tomography arising in brain imaging. Inverse Problems 27 (4), 045004.
[45] Tricomi, F. G. (1985) Integral Equations, Dover Publications, Inc., New York.
[46] Volterra, V. (1959) Theory of Functionals and of Integral and Integro-Differential Equations. With a preface by G. C. Evans, a biography of Vito Volterra and a bibliography of his published works by E. Whittaker, Dover Publications, Inc., New York.
[47] Weiss, R. (1972) Product integration for the generalized Abel equation. Math. Comp. 26 (117), 177190.
[48] Xu, M. & Wang, L. V. (2002) Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans. Med. Imaging 21 (7), 814822.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed