Skip to main content

The Role of the Ocean Carbon Cycle in Climate Change

  • Christoph Heinze (a1)

The ocean carbon cycle plays a twofold role in the context of climate change: (1) through carbon dioxide gas exchange with the atmosphere and carbon cycle climate feedbacks, the ocean regulates the carbon dioxide concentration in the atmosphere and hence has a strong influence on the heat budget of the Earth; (2) the paleo-climatic marine sediment core record is largely based on biogenic matter fluxes from the ocean surface to the sea floor, which are part of the marine carbon cycle. The ocean is important for global carbon cycling, primarily due to three factors: (1) the ocean is a huge carbon reservoir with a relatively short turnover time; (2) carbon dioxide in sea water is effectively dissociated inorganically into other substances; (3) marine plankton is keeping the surface ocean carbon dioxide concentration at a lower level than would a lifeless ocean. On intermediate to long time scales, the ocean provides the most important sink for anthropogenic carbon dioxide. The marine uptake kinetics for carbon dioxide work on a longer time scale than current and projected emissions by humans.

Hide All
1.Ramanthan, V., Callis, L., Cess, R., Hansen, J., Isaksen, I., Kuhn, W., Lacis, A., Luther, F., Mahlmann, J., Reck, R. and Schlesinger, M. (1987) Climate–chemical interactions and effects of changing atmospheric trace gases. Reviews of Geophysics, 25(7), pp. 14411482.
2.Schidlowski, M., Appel, P. W. U., Eichmann, R. and Junge, C. E. (1979) Carbon isotope geochemistry of the 3.7 × 109-yr-old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles. Geochimica et Cosmochimica Acta, 43, pp. 189199.
3.Crutzen, P. J. (2002) Geology of mankind. Nature, 215, p. 23.
4.Broecker, W. S. and Peng, T.-H. (1982) Tracers in the Sea (Palisades, NY: ELDIGIO Press), 690 pp.
5.Zeebe, R. E. and Wolf-Gladrow, D. (2001) CO2 in Seawater: Equilibrium, Kinetics, Isotopes, Elsevier Oceanography Series, 65 (Amsterdam: Elsevier Science BV), 346 pp.
6.Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davisk, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E. and Stievenard, M. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, pp. 429436.
7.Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Fischer, H., Masson-Delmotte, V. and Jouzel, J. (2005) Stable carbon cycle–climate relationship during the late Pleistocene. Science, 310, pp. 13131317.
8.Crowley, T. J. (1995) Ice age terrestrial carbon changes revisited. Global Biogeochemcial Cycles, 3(9), pp. 377389.
9.Zeng, N. (2003) Glacial-interglacial atmospheric CO2 change—the glacial burial hypothesis. Advances in Atmospheric Sciences, 20(5), pp. 677693.
10.Heinze, C. and Hasselmann, K. (1993) Inverse multi-parameter modelling of paleo-climate carbon cycle indices. Quaternary Research, 40, pp. 281296.
11.Sigman, D. M. and Boyle, E. A. (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, pp. 859869.
12.Shakun, J. D., Clark, P. U., Feng, H., Marcott, S. A., Mix, A. C., Zhengyu, L., Otto-Bliesner, B., Schmittner, A. and Bard, E. (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 484, pp. 4954.
13.Riebesell, U., Schulz, K. G., Bellerby, R. G. J., Botros, M., Fritsche, P., Meyerhöfer, M., Neill, C., Nondal, G., Oschlies, A., Wohlers, J. and Zöllner, E. (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature, 450(7169), pp. 545548.
14.Heinze, C. (2004) Simulating oceanic CaCO3 export production in the greenhouse. Geophysical Research Letters, 31, L16308.
15.Archer, D. (2005) Fate of fossil fuel CO2 in geologic time. Journal of Geophysical Research - Oceans, 110(C9), C09S05.
16.Maier-Reimer, E. and Hasselmann, K. (1987) Transport and storage of CO2 in the ocean - an inorganic ocean-circulation carbon cycle model. Climate Dynamics, 2, pp. 6390.
17.Watson, A. J., Schuster, U., Bakker, D. C. E., Bates, N. R., Corbière, A., González-Dávila, M., Friedrich, T., Hauck, J., Heinze, C., Johannessen, T., Körtzinger, A., Metzl, N., Olafsson, J., Olsen, A., Oschlies, A., Padin, X. A., Pfeil, B., Santana-Casiano, J. M., Steinhoff, T., Telszewski, M., Rios, A. F., Wallace, D. W. R. and Wanninkhof, R. (2009) Tracking the variable North Atlantic sink for atmospheric CO2. Science, 326, pp. 13911393.
18.McKinley, G. A., Fay, A. R., Takahashi, T. and Metzl, N. (2011) Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales. Nature Geoscience, 4(9), pp. 606610.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Review
  • ISSN: 1062-7987
  • EISSN: 1474-0575
  • URL: /core/journals/european-review
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed