Skip to main content Accessibility help




Competition from weeds is one of the major biophysical constraints to rice (Oryza spp.) production in sub-Saharan Africa. Smallholder rice farmers require efficient, affordable and labour-saving weed management technologies. Mechanical weeders have shown to fit this profile. Several mechanical weeder types exist but little is known about locally specific differences in performance and farmer preference between these types. Three to six different weeder types were evaluated at 10 different sites across seven countries – i.e., Benin, Burkina Faso, Côte d'Ivoire, Ghana, Nigeria, Rwanda and Togo. A total of 310 farmers (173 male, 137 female) tested the weeders, scored them for their preference, and compared them with their own weed management practices. In a follow-up study, 186 farmers from Benin and Nigeria received the ring hoe, which was the most preferred in these two countries, to use it during the entire crop growing season. Farmers were surveyed on their experiences. The probability of the ring hoe having the highest score among the tested weeders was 71%. The probability of farmers’ preference of the ring hoe over their usual practices – i.e., herbicide, traditional hoe and hand weeding – was 52, 95 and 91%, respectively. The preference of this weeder was not related to gender, years of experience with rice cultivation, rice field size, weed infestation level, water status or soil texture. In the follow-up study, 80% of farmers who used the ring hoe indicated that weeding time was reduced by at least 31%. Of the farmers testing the ring hoe in the follow-up study, 35% used it also for other crops such as vegetables, maize, sorghum, cassava and millet. These results suggest that the ring hoe offers a gender-neutral solution for reducing labour for weeding in rice as well as other crops and that it is compatible with a wide range of environments. The implications of our findings and challenges for out-scaling of mechanical weeders are discussed.


Corresponding author

††††Corresponding author. Email:


Hide All
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory, 267281 (Eds Petrov, B. N. and Csaki, F.). Budapest: Academiai Kiado.
Becker, M., Johnson, D. E., Wopereis, M. C. S. and Sow, A. (2003). Rice yield gaps in irrigated systems along an agro-ecological gradient in West Africa. Journal of Plant Nutrition and Soil Science 166:6167.
Chauhan, B. S., Awan, T. H., Abugho, S. B., Evengelista, G. and Sudhir, Y. (2015). Effect of crop establishment methods and weed control treatments on weed management, and rice yield. Field Crops Research 172:7284.
Defoer, T., Wopereis, M. C. S., Idinoba, P., Kadisha, K. L., Diack, S. and Gaye, M. (2009). Curriculum for Participatory Learning and Action Research (PLAR) for Integrated Rice Management (IRM) in Inland Valleys of Sub-Saharan Africa: Facilitator's Manual. 184. Cotonou, Benin: Africa Rice Center.
Diagne, A., Amovin-Assagba, E., Futakuchi, K. and Wopereis, M. C. S. (2013). Estimation of cultivated area, number of farming households and yield for major rice-growing environments in Africa. In Realizing Africa's Rice Promise, 3545 (Eds Wopereis, M. C. S., Johnson, D. E., Ahmadi, N., Tollens, E. and Jalloh, A.). Wallingford, Oxfordshire, UK: CAB International.
Dingkuhn, M., Jones, M. P., Johnson, D. E. and Sow, A. (1998). Growth and yield potential of Oryza sativa and O. glaberrima upland rice cultivars and their interspecific progenies. Field Crops Research 57:5769.
Gongotchame, S., Dieng, I., Ahouanton, K., Johnson, J.-M., Alognon, A. D., Tanaka, A., Atta, S. and Saito, K. (2014). Participatory evaluation of mechanical weeders in lowland rice production systems in Benin. Crop Protection 61:3237.
Guthiga, P. M., Karugia, J. T. and Nyikal, R. A. (2007). Does use of draft animal power increase economic efficiency of smallholder farms in Kenya? Renewable Agriculture and Food Systems 22(4):290296.
Krupnik, T. J., Shennan, C., Settle, W. H., Demont, M., Ndiaye, A. B. and Rodenburg, J. (2012). Improving irrigated rice production in the Senegal River valley through experiential learning and innovation. Agricultural Systems 109:101112.
Kuivanen, K. S., Alvarez, S., Michalscheck, M., Adjei-Nsiah, S., Descheemaeker, K., Mellon-Bedi, S. and Groot, J. C. (2016). Characterizing the diversity of smallholder farming systems and their constraints and opportunities for innovation: A case study from the northern region, Ghana. NJAS-Wageningen Journal of Life Sciences 78:153166.
Lodin-Bergman, J., Paulson, S. and Mugenyi, M. S. (2012). New seeds, gender norms and labor dynamics in Hoima District, Uganda. Journal of Eastern African Studies 6:405422.
Ndiiri, J. A., Mati, B. M., Home, P. G., Odongo, B. and Uphoff, N. (2013). Adoption, constraints and economic returns of paddy rice under the system of rice intensification in Mwea, Kenya. Agricultural Water Management 129:4455.
Niang, A., Becker, M., Ewert, F., Dieng, I., Gaiser, T., Tanaka, A., Senthilkumar, K., Rodenburg, J., Johnson, J.-M., Akakpo, C., Segda, Z., Gbakatchetche, H., Jaiteh, F., Bam, R. K., Dogbe, W., Keita, S., Kamissoko, N., Mossi, I. M., Bakare, O. S., Cissé, M., Baggie, I., Ablede, K. A. and Saito, K. (2017). Variability and determinants of yields in rice production systems of West Africa. Field Crops Research 207:112.
Ogwuike, P., Rodenburg, J., Diagne, A., Agboh-Noameshie, R. and Amovin-Assagba, E. (2014). Weed management in upland rice in sub-Saharan Africa: Impact on labor and crop productivity. Food Security 6:327337.
Ollenburger, M. H., Descheemaeker, K., Crane, T. A., Sanogo, O. M. and Giller, K. E. (2016). Waking the sleeping giant: Agricultural intensification, extensification or stagnation in Mali's Guinea Savannah. Agricultural Systems 148:5870.
Rickman, J., Moreira, J., Gummert, M. and Wopereis, M. C. S. (2013). Mechanizing Africa's rice sector. In Realizing Africa's Rice Promise, 332342 (Eds Wopereis, M. C. S., Johnson, D. E., Ahmadi, N., Tollens, E., Jalloh, A.). Wallingford, UK: CAB International.
Rodenburg, J. and Johnson, D. E. (2009). Weed management in rice-based cropping systems in Africa. Advances in Agronomy 103:149218.
Rodenburg, J., Saito, K., Irakiza, R., Makokha, D. W., Onyuka, E. A. and Senthilkumar, K. (2015). Labor-saving weed technologies for lowland rice farmers in sub-Saharan Africa. Weed Technology 29:751757.
Rodenburg, J., Saito, K., Kakai, R. G., Toure, A., Mariko, M. and Kiepe, P. (2009). Weed competitiveness of the lowland rice varieties of NERICA in the southern Guinea Savanna. Field Crops Research 114:411418.
Saito, K. and Futakuchi, K. (2014). Improving estimation of weed suppressive ability of upland rice varieties using substitute weeds. Field Crops Research 162:15.
Saito, K., Nelson, A., Zwart, S., Niang, A., Sow, A., Yoshida, H. and Wopereis, M. C. S. (2013). Towards a better understanding of biophysical determinants of yield gaps and the potential for expansion of the rice area in Africa. In Realizing Africa's Rice Promise, 188203 (Eds Wopereis, M. C. S., Johnson, D. E., Ahmadi, N., Tollens, E. and Jalloh, A.). Wallingford, UK: CAB International.
Saito, K., Sokei, Y. and Wopereis, M. C. S. (2012). Enhancing rice productivity in West Africa through genetic enhancement. Crop Science 52:484493.
Senthilkumar, K., Bindraban, P. S., Thiyagarajan, T. M., de Ridder, N. and Giller, K. E. (2008). Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers’ (lack of) acceptance. Agricultural Systems 98:8294.
Sims, B. and Kienzle, J. (2016). Making mechanization accessible to smallholder farmers in Sub-Saharan Africa. Environments 3(2):11.
Snijders, T. A. B. and Bosker, R. J. (1999). Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. London: Sage Publications.
Swanton, C. J. and Weise, S. F. (1991). Integrated weed management—The rationale and approach. Weed Technology 5(3):657663.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Experimental Agriculture
  • ISSN: 0014-4797
  • EISSN: 1469-4441
  • URL: /core/journals/experimental-agriculture
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary materials

Johnson et al. supplementary material
Figure S1

 Word (514 KB)
514 KB
Supplementary materials

Johnson et al. supplementary material
Table S1

 Word (14 KB)
14 KB
Supplementary materials

Johnson et al. supplementary material
Table S2

 Word (15 KB)
15 KB
Supplementary materials

Johnson et al. supplementary material
Table S3

 Word (18 KB)
18 KB
Supplementary materials

Johnson et al. supplementary material
Table S4

 Word (13 KB)
13 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed