Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 46
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Cerny, Natacha Sánchez Alberti, Andrés Bivona, Augusto E De Marzi, Mauricio C Frank, Fernanda M Cazorla, Silvia I and Malchiodi, Emilio L 2016. Coadministration of cruzipain and GM-CSF DNAs, a new immunotherapeutic vaccine againstTrypanosoma cruziinfection. Human Vaccines & Immunotherapeutics, Vol. 12, Issue. 2, p. 438.


    Couto, Marcos Sánchez, Carina Dávila, Belén Machín, Valentina Varela, Javier Álvarez, Guzmán Cabrera, Mauricio Celano, Laura Aguirre-López, Beatriz Cabrera, Nallely de Gómez-Puyou, Marieta Gómez-Puyou, Armando Pérez-Montfort, Ruy Cerecetto, Hugo and González, Mercedes 2015. 3-H-[1,2]Dithiole as a New Anti-Trypanosoma cruzi Chemotype: Biological and Mechanism of Action Studies. Molecules, Vol. 20, Issue. 8, p. 14595.


    Eadsforth, Thomas C. Pinto, Andrea Luciani, Rosaria Tamborini, Lucia Cullia, Gregorio De Micheli, Carlo Marinelli, Luciana Cosconati, Sandro Novellino, Ettore Lo Presti, Leonardo Cordeiro da Silva, Anabela Conti, Paola Hunter, William N. and Costi, Maria P. 2015. Characterization of 2,4-Diamino-6-oxo-1,6-dihydropyrimidin-5-yl Ureido Based Inhibitors ofTrypanosoma bruceiFolD and Testing for Antiparasitic Activity. Journal of Medicinal Chemistry, Vol. 58, Issue. 20, p. 7938.


    Martinez-Mayorga, Karina Byler, Kendall G. Ramirez-Hernandez, Ariadna I. and Terrazas-Alvares, Diana E. 2015. Cruzain inhibitors: efforts made, current leads and a structural outlook of new hits. Drug Discovery Today, Vol. 20, Issue. 7, p. 890.


    Salvador-Reyes, Lilibeth A. and Luesch, Hendrik 2015. Biological targets and mechanisms of action of natural products from marine cyanobacteria. Nat. Prod. Rep., Vol. 32, Issue. 3, p. 478.


    Sullivan, James A. Tong, Jie Lun Wong, Martin Kumar, Ambika Sarkar, Hajrah Ali, Sarah Hussein, Ikran Zaman, Iqra Meredith, Emma Louise Helsby, Nuala A. Hu, Longqin and Wilkinson, Shane R. 2015. Unravelling the role of SNM1 in the DNA repair system ofTrypanosoma brucei. Molecular Microbiology, Vol. 96, Issue. 4, p. 827.


    2015. Practical Medical Microbiology for Clinicians.


    CALDAS, SÉRGIO CALDAS, IVO SANTANA CECÍLIO, ALZIRA BATISTA DINIZ, LÍVIA DE FIGUEIREDO TALVANI, ANDRÉ RIBEIRO, ISABELA and BAHIA, MARIA TEREZINHA 2014. Therapeutic responses to different anti-Trypanosoma cruzi drugs in experimental infection by benznidazole-resistant parasite stock. Parasitology, Vol. 141, Issue. 12, p. 1628.


    Díaz, María V. Miranda, Mariana R. Campos-Estrada, Carolina Reigada, Chantal Maya, Juan D. Pereira, Claudio A. and López-Muñoz, Rodrigo 2014. Pentamidine exerts in vitro and in vivo anti Trypanosoma cruzi activity and inhibits the polyamine transport in Trypanosoma cruzi. Acta Tropica, Vol. 134, p. 1.


    Fonseca-Berzal, Cristina Escario, José Antonio Arán, Vicente J. and Gómez-Barrio, Alicia 2014. Further insights into biological evaluation of new anti-Trypanosoma cruzi 5-nitroindazoles. Parasitology Research, Vol. 113, Issue. 3, p. 1049.


    Fonseca-Berzal, Cristina Rojas Ruiz, Fernando A. Escario, José A. Kouznetsov, Vladimir V. and Gómez-Barrio, Alicia 2014. In vitro phenotypic screening of 7-chloro-4-amino(oxy)quinoline derivatives as putative anti-Trypanosoma cruzi agents. Bioorganic & Medicinal Chemistry Letters, Vol. 24, Issue. 4, p. 1209.


    GILBERT, IAN H. 2014. Target-based drug discovery for human African trypanosomiasis: selection of molecular target and chemical matter. Parasitology, Vol. 141, Issue. 01, p. 28.


    Horn, David and Duraisingh, Manoj T. 2014. Antiparasitic Chemotherapy: From Genomes to Mechanisms. Annual Review of Pharmacology and Toxicology, Vol. 54, Issue. 1, p. 71.


    Menezes, Júlio Vaz, Luana de Abreu Vieira, Paula da Silva Fonseca, Kátia Carneiro, Cláudia and Taylor, Jason 2014. Synthesis and Anti-Trypanosoma cruzi Activity of Diaryldiazepines. Molecules, Vol. 20, Issue. 1, p. 43.


    Sherlach, Katy S. and Roepe, Paul D. 2014. “Drug resistance associated membrane proteins”. Frontiers in Physiology, Vol. 5,


    Taylor, Martin C. and Kelly, John M. 2014. Optimizing bioluminescence imaging to study protozoan parasite infections. Trends in Parasitology, Vol. 30, Issue. 4, p. 161.


    Trochine, Andrea Alvarez, Guzmán Corre, Sandra Faral-Tello, Paula Durán, Rosario Batthyany, Carlos I. Cerecetto, Hugo González, Mercedes and Robello, Carlos 2014. Trypanosoma cruzi chemical proteomics using immobilized benznidazole. Experimental Parasitology, Vol. 140, p. 33.


    Velásquez, Angela Maria Arenas Francisco, Acácio Ivo Kohatsu, Andréa Akiko Nakaima Silva, Flavia Alves de Jesus Rodrigues, Danilo Fernando Teixeira, Rafaela Gomes da Silva Chiari, Bruna Galdorfini de Almeida, Maria Gabriela José Isaac, Vera Lucia Borges Vargas, Maria D. and Cicarelli, Regina Maria Barretto 2014. Synthesis and tripanocidal activity of ferrocenyl and benzyl diamines against Trypanosoma brucei and Trypanosoma cruzi. Bioorganic & Medicinal Chemistry Letters, Vol. 24, Issue. 7, p. 1707.


    Buchanan-Kilbey, Grace Djumpah, Joshua Papadopoulou, Maria V. Bloomer, William Hu, Lonqin Wilkinson, Shane R. and Ashworth, Rachel 2013. Evaluating the developmental toxicity of trypanocidal nitroaromatic compounds on zebrafish. Acta Tropica, Vol. 128, Issue. 3, p. 701.


    Fonseca-Berzal, Cristina Merchán Arenas, Diego R. Romero Bohórquez, Arnold R. Escario, José A. Kouznetsov, Vladimir V. and Gómez-Barrio, Alicia 2013. Selective activity of 2,4-diaryl-1,2,3,4-tetrahydroquinolines on Trypanosoma cruzi epimastigotes and amastigotes expressing β-galactosidase. Bioorganic & Medicinal Chemistry Letters, Vol. 23, Issue. 17, p. 4851.


    ×
  • Expert Reviews in Molecular Medicine, Volume 11
  • 2009, e31

Trypanocidal drugs: mechanisms, resistance and new targets

  • Shane R. Wilkinson (a1) and John M. Kelly (a2)
  • DOI: http://dx.doi.org/10.1017/S1462399409001252
  • Published online: 29 October 2009
Abstract

The protozoan parasites Trypanosoma brucei and Trypanosoma cruzi are the causative agents of African trypanosomiasis and Chagas disease, respectively. These are debilitating infections that exert a considerable health burden on some of the poorest people on the planet. Treatment of trypanosome infections is dependent on a small number of drugs that have limited efficacy and can cause severe side effects. Here, we review the properties of these drugs and describe new findings on their modes of action and the mechanisms by which resistance can arise. We further outline how a greater understanding of parasite biology is being exploited in the search for novel chemotherapeutic agents. This effort is being facilitated by new research networks that involve academic and biotechnology/pharmaceutical organisations, supported by public–private partnerships, and are bringing a new dynamism and purpose to the search for trypanocidal agents.

Copyright
Corresponding author
*Corresponding author: Shane Wilkinson, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK. Tel: +44 (0)207 882 3057; Fax: +44 (0)20 8983 0973; E-mail: s.r.wilkinson@qmul.ac.uk
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1D. Steverding (2008) The history of African trypanosomiasis. Parasites and Vectors 1, 3

2M.P. Barrett (2003) The trypanosomiases. Lancet 362, 1469-1480

3K. Stuart (2008) Kinetoplastids: related protozoan pathogens, different diseases. Journal of Clinical Investigation 118, 1301-1310

4M.P. Barrett (2006) The rise and fall of sleeping sickness. Lancet 367, 1377-1378

5E. Matovu (2001) Genetic variants of the TbAT1 adenosine transporter from African trypanosomes in relapse infections following melarsoprol therapy. Molecular and Biochemical Parasitology 117, 73-81

6F. Checchi (2007) Nifurtimox plus eflornithine for late-stage sleeping sickness in Uganda: a case series. PLoS Neglected Tropical Diseases 1, e64

7G. Priotto (2006) Three drug combinations for late-stage Trypanosoma brucei gambiense sleeping sickness: a randomized clinical trial in Uganda. PLoS Clinical Trials 1, e39

8G. Priotto (2009) Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet 374, 56-64

11D. Legros (2002) Treatment of human African trypanosomiasis–present situation and needs for research and development. Lancet Infectious Diseases 2, 437-440

12A. Spinks (1948) The persistence in the blood stream of some compounds related to suramin. Biochemical Journal 42, 109-116

13A.H. Fairlamb and I.B. Bowman (1980) Uptake of the trypanocidal drug suramin by bloodstream forms of Trypanosoma brucei and its effect on respiration and growth rate in vivo. Molecular and Biochemical Parasitology 1, 315-333

14I. Coppens (1987) Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei. Journal of Protozoology 34, 465-473

15E.L. Vansterkenburg (1993) The uptake of the trypanocidal drug suramin in combination with low-density lipoproteins by Trypanosoma brucei and its possible mode of action. Acta Tropica 54, 237-250

16A. Pal , B.S. Hall and M.C. Field (2002) Evidence for a non-LDL-mediated entry route for the trypanocidal drug suramin in Trypanosoma brucei. Molecular and Biochemical Parasitology 122, 217-221

17A.G. Scott , A. Tait and C.M. Turner (1996) Characterisation of cloned lines of Trypanosoma brucei expressing stable resistance to MelCy and suramin. Acta Tropica 60, 251-262

19O. Misset and F.R. Opperdoes (1987) The phosphoglycerate kinases from Trypanosoma brucei. A comparison of the glycosomal and the cytosolic isoenzymes and their sensitivity towards suramin. European Journal of Biochemistry 162, 493-500

20M. Willson (1993) Synthesis and activity of inhibitors highly specific for the glycolytic enzymes from Trypanosoma brucei. Molecular and Biochemical Parasitology 59, 201-210

21J.E. Conte Jr, R.A. Upton and E.T. Lin (1987) Pentamidine pharmacokinetics in patients with AIDS with impaired renal function. Journal of Infectious Diseases 156, 885-890

22B.J. Berger (1992) Primary and secondary metabolism of pentamidine by rats. Antimicrobial Agents and Chemotherapy 36, 1825-1831

23B.J. Berger and A.H. Fairlamb (1993) Cytochrome P450 in trypanosomatids. Biochemical Pharmacology 46, 149-157

24L. Sanderson (2009) Pentamidine movement across the murine blood-brain and blood-cerebrospinal fluid barriers: effect of trypanosome infection, combination therapy, P-glycoprotein, and multidrug resistance-associated protein. Journal of Pharmacology and Experimental Therapeutics 329, 967-977

26H.P. de Koning , and S.M. Jarvis (2001) Uptake of pentamidine in Trypanosoma brucei brucei is mediated by the P2 adenosine transporter and at least one novel, unrelated transporter. Acta Tropica 80, 245-250

27B.J. Berger , N.S. Carter and A.H. Fairlamb (1995) Characterisation of pentamidine-resistant Trypanosoma brucei brucei. Molecular and Biochemical Parasitology 69, 289-298

28E. Matovu (2003) Mechanisms of arsenical and diamidine uptake and resistance in Trypanosoma brucei. Eukaryotic Cell 2, 1003-1008

30D.J. Bridges (2007) Loss of the high-affinity pentamidine transporter is responsible for high levels of cross-resistance between arsenical and diamidine drugs in African trypanosomes. Molecular Pharmacology 71, 1098-1108

31W.D. Wilson (2008) Antiparasitic compounds that target DNA. Biochimie 90, 999-1014

32A.M. Mathis (2006) Accumulation and intracellular distribution of antitrypanosomal diamidine compounds DB75 and DB820 in African trypanosomes. Antimicrobial Agents and Chemotherapy 50, 2185-2191

33T.A. Shapiro and P.T. Englund (1990) Selective cleavage of kinetoplast DNA minicircles promoted by antitrypanosomal drugs. Proceedings of the National Academy of Sciences of the United States of America 87, 950-954

34C.C. Wang (1995) Molecular mechanisms and therapeutic approaches to the treatment of African trypanosomiasis. Annual Review of Pharmacology and Toxicology 35, 93-127

35A.J. Bitonti , J.A. Dumont and P.P. McCann (1986) Characterization of Trypanosoma brucei brucei S-adenosyl-L-methionine decarboxylase and its inhibition by Berenil, pentamidine and methylglyoxal bis(guanylhydrazone). Biochemical Journal 237, 685-689

36G. Benaim (1993) A calmodulin-stimulated Ca2+ pump in plasma-membrane vesicles from Trypanosoma brucei; selective inhibition by pentamidine. Biochemical Journal 296, 759-763

37A.E. Vercesi and R. Docampo (1992) Ca2+ transport by digitonin-permeabilized Leishmania donovani. Effects of Ca2+, pentamidine and WR-6026 on mitochondrial membrane potential in situ. Biochemical Journal 284, 463-467

38S.N. Moreno (1996) Pentamidine is an uncoupler of oxidative phosphorylation in rat liver mitochondria. Archives of Biochemistry and Biophysics 326, 15-20

40B. Enanga (2002) Sleeping sickness and the brain. Cellular and Molecular Life Sciences 59, 845-858

42C. Burri (1993) Pharmacokinetic properties of the trypanocidal drug melarsoprol. Chemotherapy 39, 225-234

43N.S. Carter and A.H. Fairlamb (1993) Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature 361, 173-176

45M.P. Barrett and A.H. Fairlamb (1999) The biochemical basis of arsenical-diamidine crossresistance in African trypanosomes. Parasitology Today 15, 136-140

46C.K. Tye (1998) An approach to use an unusual adenosine transporter to selectively deliver polyamine analogues to trypanosomes. Bioorganic and Medicinal Chemistry Letters 8, 811-816

48H.P. de Koning (2001) Transporters in African trypanosomes: role in drug action and resistance. International Journal of Parasitology 31, 512-522

49A. Baliani (2005) Design and synthesis of a series of melamine-based nitroheterocycles with activity against Trypanosomatid parasites. Journal of Medicinal Chemistry 48, 5570-5579

50M.L. Stewart (2004) Trypanocidal activity of melamine-based nitroheterocycles. Antimicrobial Agents and Chemotherapy 48, 1733-1738

51A. Baliani (2009) Novel functionalized melamine-based nitroheterocycles: synthesis and activity against trypanosomatid parasites. Organic and Biomolecular Chemistry 7, 1154-1166

52C. Chollet (2009) Targeted delivery of compounds to Trypanosoma brucei using the melamine motif. Bioorganic and Medicinal Chemistry 17, 2512-2523

53A.H. Fairlamb (1992) Characterisation of melarsen-resistant Trypanosoma brucei brucei with respect to cross-resistance to other drugs and trypanothione metabolism. Molecular and Biochemical Parasitology 53, 213-222

54H.P. de Koning (2008) Ever-increasing complexities of diamidine and arsenical crossresistance in African trypanosomes. Trends in Parasitology 24, 345-349

55E. Van Schaftingen , F.R. Opperdoes and H.G. Hers (1987) Effects of various metabolic conditions and of the trivalent arsenical melarsen oxide on the intracellular levels of fructose 2,6-bisphosphate and of glycolytic intermediates in Trypanosoma brucei. European Journal of Biochemistry 166, 653-661

56S. Hanau (1996) 6-Phosphogluconate dehydrogenase from Trypanosoma brucei. Kinetic analysis and inhibition by trypanocidal drugs. European Journal of Biochemistry 240, 592-599

57A.H. Fairlamb (1985) Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 227, 1485-1487

58A.H. Fairlamb , G.B. Henderson and A. Cerami (1989) Trypanothione is the primary target for arsenical drugs against African trypanosomes. Proceedings of the National Academy of Sciences of the United States of America 86, 2607-2611

59M.L. Cunningham , M.J. Zvelebil and A.H. Fairlamb (1994) Mechanism of inhibition of trypanothione reductase and glutathione reductase by trivalent organic arsenicals. European Journal of Biochemistry 221, 285-295

60S. Krieger (2000) Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Molecular Microbiology 35, 542-552

61V. Sauvage The role of ATP-Binding Cassette (ABC) proteins in protozoan parasites. Molecular and Biochemical Parasitology 167, 81-94

62S.K. Shahi , R.L. Krauth-Siegel and C.E. Clayton (2002) Overexpression of the putative thiol conjugate transporter TbMRPA causes melarsoprol resistance in Trypanosoma brucei. Molecular Microbiology 43, 1129-1138

63V.P. Alibu (2006) The role of Trypanosoma brucei MRPA in melarsoprol susceptibility. Molecular and Biochemical Parasitology 146, 38-44

64C.J. Bacchi (1980) Polyamine metabolism: a potential therapeutic target in trypanosomes. Science 210, 332-334

65J. Robays (2008) Eflornithine is a cost-effective alternative to melarsoprol for the treatment of second-stage human West African trypanosomiasis in Caxito, Angola. Tropical Medicine and International Health 13, 265-271

67M. Balasegaram (2009) Effectiveness of melarsoprol and eflornithine as first-line regimens for gambiense sleeping sickness in nine Medecins Sans Frontieres programmes. Transactions of the Royal Society of Tropical Medicine and Hygiene 103, 280-290

68C. Politi (1995) Cost-effectiveness analysis of alternative treatments of African gambiense trypanosomiasis in Uganda. Health Eeconomics 4, 273-287

69F. Chappuis (2005) Eflornithine is safer than melarsoprol for the treatment of second-stage Trypanosoma brucei gambiense human African trypanosomiasis. Clinical Infectious Diseases 41, 748-751

70V. Bellofatto (1987) Biochemical changes associated with alpha-difluoromethylornithine uptake and resistance in Trypanosoma brucei. Molecular and Biochemical Parasitology 25, 227-238

71B.G. Erwin and A.E. Pegg (1982) Uptake of alpha-difluoromethylornithine by mouse fibroblasts. Biochemical Pharmacology 31, 2820-2823

72A.J. Bitonti (1986) Uptake of alpha-difluoromethylornithine by Trypanosoma brucei brucei. Biochemical Pharmacology 35, 351-354

73M.A. Phillips and C.C. Wang (1987) A Trypanosoma brucei mutant resistant to alpha-difluoromethylornithine. Molecular and Biochemical Parasitology 22, 9-17

74E.K. Willert and M.A. Phillips (2008) Regulated expression of an essential allosteric activator of polyamine biosynthesis in African trypanosomes. PLoS Pathogens 4, e1000183

77C.W. Tabor and H. Tabor (1984) Polyamines. Annual Review of Biochemistry 53, 749-790

79C.J. Schofield , J. Jannin and R. Salvatella (2006) The future of Chagas disease control. Trends in Parasitology 22, 583-588

80C. Bern (2007) Evaluation and treatment of Chagas disease in the United States: a systematic review. Journal of the American Medical Association 298, 2171-2181

81C.A. Diazgranados (2009) Chagasic encephalitis in HIV patients: common presentation of an evolving epidemiological and clinical association. Lancet Infectious Diseases 9, 324-330

82J.C. Dias , A.C. Silveira and C.J. Schofield (2002) The impact of Chagas disease control in Latin America: a review. Memorias do Instituto Oswaldo Cruz 97, 603-612

83J. Rodriques Coura and S.L. de Castro (2002) A critical review on Chagas disease chemotherapy. Memorias do Instituto Oswaldo Cruz 97, 3-24

84N.B. Gorla (1989) Thirteenfold increase of chromosomal aberrations non-randomly distributed in chagasic children treated with nifurtimox. Mutation Research 224, 263-267

85R.C. Ferreira , U. Schwarz and L.C. Ferreira (1988) Activation of anti-Trypanosoma cruzi drugs to genotoxic metabolites promoted by mammalian microsomal enzymes. Mutation Research 204, 577-583

86J. Kalil and E. Cunha-Neto (1996) Autoimmunity in chagas disease cardiomyopathy: Fulfilling the criteria at last? Parasitology Today 12, 396-399

87R.L. Tarleton , L. Zhang and M.O. Downs (1997) “Autoimmune rejection” of neonatal heart transplants in experimental Chagas disease is a parasite-specific response to infected host tissue. Proceedings of the National Academy of Sciences of the United States of America 94, 3932-3937

88R.L. Tarleton and L. Zhang (1999) Chagas disease etiology: autoimmunity or parasite persistence? Parasitology Today 15, 94-99

89R.L. Tarleton (2003) Chagas disease: a role for autoimmunity? Trends in Parasitology 19, 447-451

90S. Garcia (2005) Treatment with benznidazole during the chronic phase of experimental Chagas' disease decreases cardiac alterations. Antimicrobial Agents and Chemotherapy 49, 1521-1528

91J.M. Bustamante , L.M. Bixby and R.L. Tarleton (2008) Drug-induced cure drives conversion to a stable and protective CD8+ T central memory response in chronic Chagas disease. Nature Medicine 14, 542-550

92M.I. Walton and P. Workman (1987) Nitroimidazole bioreductive metabolism. Quantitation and characterisation of mouse tissue benznidazole nitroreductases in vivo and in vitro. Biochemical Pharmacology 36, 887-896

93M. Montalto de Mecca , E.G. Diaz and J.A. Castro (2002) Nifurtimox biotransformation to reactive metabolites or nitrite in liver subcellular fractions and model systems. Toxicology Letters 136, 1-8

94M.M. Mecca (2008) Benznidazole biotransformation in rat heart microsomal fraction without observable ultrastructural alterations: comparison to Nifurtimox-induced cardiac effects. Memorias do Instituto Oswaldo Cruz 103, 549-553

96R. Docampo (1990) Sensitivity of parasites to free radical damage by antiparasitic drugs. Chemico-Biological Interactions 73, 1-27

98C. Viode (1999) Enzymatic reduction studies of nitroheterocycles. Biochemical Pharmacology 57, 549-557

99G.B. Henderson (1988) “Subversive” substrates for the enzyme trypanothione disulfide reductase: alternative approach to chemotherapy of Chagas disease. Proceedings of the National Academy of Sciences of the United States of America 85, 5374-5378

100K. Blumenstiel (1999) Nitrofuran drugs as common subversive substrates of Trypanosoma cruzi lipoamide dehydrogenase and trypanothione reductase. Biochemical Pharmacology 58, 1791-1799

101A. Boveris (1980) Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi. Biochemical Journal 188, 643-648

102A.H. Fairlamb and A. Cerami (1992) Metabolism and functions of trypanothione in the Kinetoplastida. Annual Review of Microbiology 46, 695-729

103L. Flohe , H.J. Hecht and P. Steinert (1999) Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radical Biology and Medicine 27, 966-984

104S.R. Wilkinson (2002) Trypanosoma cruzi expresses a plant-like ascorbate-dependent hemoperoxidase localized to the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America 99, 13453-13458

105S.R. Wilkinson and J.M. Kelly (2003) The role of glutathione peroxidases in trypanosomatids. Biological Chemistry 384, 517-525

106F. Irigoín (2008) Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radical Biology and Medicine 45, 733-742

107S.R. Prathalingham (2007) Deletion of the Trypanosoma brucei superoxide dismutase gene sodb1 increases sensitivity to nifurtimox and benznidazole. Antimicrobial Agents and Chemotherapy 51, 755-758

108S.R. Wilkinson (2000) Distinct mitochondrial and cytosolic enzymes mediate trypanothione-dependent peroxide metabolism in Trypanosoma cruzi. Journal of Biological Chemistry 275, 8220-8225

109S.R. Wilkinson (2002) The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin. Journal of Biological Chemistry 277, 17062-17071

110S.R. Wilkinson (2002) TcGPXII, a glutathione-dependent Trypanosoma cruzi peroxidase with substrate specificity restricted to fatty acid and phospholipid hydroperoxides, is localized to the endoplasmic reticulum. Biochemical Journal 364, 787-794

111S.R. Wilkinson (2003) RNA interference identifies two hydroperoxide metabolizing enzymes that are essential to the bloodstream form of the African trypanosome. Journal of Biological Chemistry 278, 31640-13646

112S.R. Wilkinson (2006) Functional characterisation of the iron superoxide dismutase gene repertoire in Trypanosoma brucei. Free Radical Biology and Medicine 40, 198-209

113J.M. Kelly (1993) Phenotype of recombinant Leishmania donovani and Trypanosoma cruzi which over-express trypanothione reductase. Sensitivity towards agents that are thought to induce oxidative stress. European Journal of Biochemistry 218, 29-37

115M.D. Roldan (2008) Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiology Reviews 32, 474-500

117A.J. Streeter and B.A. Hoener (1988) Evidence for the involvement of a nitrenium ion in the covalent binding of nitrofurazone to DNA. Pharmaceutical Research 5, 434-436

118J.D. Maya (1997) Effects of nifurtimox and benznidazole upon glutathione and trypanothione content in epimastigote, trypomastigote and amastigote forms of Trypanosoma cruzi. Molecular and Biochemical Parasitology 86, 101-106

119B.K. Kubata (2002) A key role for old yellow enzyme in the metabolism of drugs by Trypanosoma cruzi. Journal of Experimental Medicine 196, 1241-1251

120S.R. Wilkinson (2008) A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proceedings of the National Academy of Sciences of the United States of America 105, 5022-5027

122S.M. Murta and A.J. Romanha (1998) In vivo selection of a population of Trypanosoma cruzi and clones resistant to benznidazole. Parasitology 116, 165-171

123F.B. Nogueira (2006) Increased expression of iron-containing superoxide dismutase-A (TcFeSOD-A) enzyme in Trypanosoma cruzi population with in vitro-induced resistance to benznidazole. Acta Tropica 100, 119-132

124S.M. Murta (2006) Deletion of copies of the gene encoding old yellow enzyme (TcOYE), a NAD(P)H flavin oxidoreductase, associates with in vitro-induced benznidazole resistance in Trypanosoma cruzi. Molecular and Biochemical Parasitology 146, 151-162

125S.M. Murta (2008) Differential gene expression in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Acta Tropica 107, 59-65

126H.M. Andrade (2008) Proteomic analysis of Trypanosoma cruzi resistance to Benznidazole. Journal of Proteome Research 7, 2357-2367

127J.V. Rego (2008) Trypanosoma cruzi: characterisation of the gene encoding tyrosine aminotransferase in benznidazole-resistant and susceptible populations. Experimental Parasitology 118, 111-117

128F.M. Campos (2009) Characterization of a gene encoding alcohol dehydrogenase in benznidazole-susceptible and-resistant populations of Trypanosoma cruzi. Acta Tropica 111, 56-63

129F.B. Nogueira (2009) Molecular characterization of cytosolic and mitochondrial tryparedoxin peroxidase in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Parasitology Research 104, 835-844

130P. Portal (2008) Multiple NADPH-cytochrome P450 reductases from Trypanosoma cruzi suggested role on drug resistance. Molecular and Biochemical Parasitology 160, 42-51

131N.M. El-Sayed (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309, 404-409

132M. Berriman (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309, 416-422

133M. Meissner , C. Agop-Nersesian and W.J. Sullivan Jr, (2007) Molecular tools for analysis of gene function in parasitic microorganisms. Applied Microbiology and Biotechnology 75, 963-975

134S.A. Motyka and P.T. Englund (2004) RNA interference for analysis of gene function in trypanosomatids. Current Opinion in Microbiology 7, 362-368

135S.T. Furlong (1989) Sterols of parasitic protozoa and helminths. Experimental Parasitology 68, 482-485

136F. Buckner (2003) A class of sterol 14-demethylase inhibitors as anti-Trypanosoma cruzi agents. Proceedings of the National Academy of Sciences of the United States of America 100, 15149-15153

137F.S. Buckner (2003) Cloning and analysis of Trypanosoma cruzi lanosterol 14alpha-demethylase. Molecular and Biochemical Parasitology 132, 75-81

138F.S. Buckner (2001) Potent anti-Trypanosoma cruzi activities of oxidosqualene cyclase inhibitors. Antimicrobial Agents and Chemotherapy 45, 1210-1205

139J.A. Urbina (2002) Squalene synthase as a chemotherapeutic target in Trypanosoma cruzi and Leishmania mexicana. Molecular and Biochemical Parasitology 125, 35-45

140G.I. Lepesheva (2007) Sterol 14alpha-demethylase as a potential target for antitrypanosomal therapy: enzyme inhibition and parasite cell growth. Chemistry and Biology 14, 1283-1293

141C.K. Chen (2009) Trypanosoma cruzi CYP51 Inhibitor Derived from a Mycobacterium tuberculosis Screen Hit. PLoS Neglected Tropical Diseases 3, e372

142M.E. Konkle (2009) Indomethacin amides as a novel molecular scaffold for targeting Trypanosoma cruzi sterol 14alpha-demethylase. Journal of Medicinal Chemistry 52, 2846-2853

143I. Coppens and P.J. Courtoy (2000) The adaptative mechanisms of Trypanosoma brucei for sterol homeostasis in its different life-cycle environments. Annual Review of Microbiology 54, 129-156

144J.A. Urbina and R. Docampo (2003) Specific chemotherapy of Chagas disease: controversies and advances. Trends in Parasitology 19, 495-501

145C.W. Roberts (2003) Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Molecular and Biochemical Parasitology 126, 129-142

146J.A. Urbina (2009) Ergosterol biosynthesis and drug development for Chagas disease. Memorias do Instituto Oswaldo Cruz 104, 311-318

147O. Hucke (2005) The protein farnesyltransferase inhibitor Tipifarnib as a new lead for the development of drugs against Chagas disease. Journal of Medicinal Chemistry 48, 5415-5418

148P.K. Suryadevara (2009) Structurally simple inhibitors of lanosterol 14alpha-demethylase are efficacious in a rodent model of acute Chagas disease. Journal of Medicinal Chemistry 52, 3703-3715

149J.M. Kraus (2009) Rational modification of a candidate cancer drug for use against Chagas disease. Journal of Medicinal Chemistry 52, 1639-1647

150J.H. McKerrow (2009) Two approaches to discovering and developing new drugs for Chagas disease. Memorias do Instituto Oswaldo Cruz 104, 263-269

151J. Molina (2000) In vivo activity of the bis-triazole D0870 against drug-susceptible and drug-resistant strains of the protozoan parasite Trypanosoma cruzi. Journal of Antimicrobial Chemotherapy 46, 137-140

152J.A. Urbina (2003) Parasitological cure of acute and chronic experimental Chagas disease using the long-acting experimental triazole TAK-187. Activity against drug-resistant Trypanosoma cruzi strains. International Journal of Antimicrobial Agents 21, 39-48

153J.A. Urbina (1988) Synergistic effects of ketoconazole and SF-86327 on the proliferation of epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Annals of the New York Academy of Sciences 544, 357-358

154A. Gerpe (2008) Heteroallyl-containing 5-nitrofuranes as new anti-Trypanosoma cruzi agents with a dual mechanism of action. Bioorganic and Medicinal Chemistry 16, 569-577

155R.A. Maldonado (1993) Experimental chemotherapy with combinations of ergosterol biosynthesis inhibitors in murine models of Chagas' disease. Antimicrobial Agents and Chemotherapy 37, 1353-1359

156J.C. Hinshaw (2003) Oxidosqualene cyclase inhibitors as antimicrobial agents. Journal of Medicinal Chemistry 46, 4240-4243

157J.A. Urbina (1995) Modification of the sterol composition of Trypanosoma (Schizotrypanum) cruzi epimastigotes by delta 24(25)-sterol methyl transferase inhibitors and their combinations with ketoconazole. Molecular and Biochemical Parasitology 73, 199-210

158J.A. Urbina (1996) Antiproliferative effects of delta 24(25) sterol methyl transferase inhibitors on Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Chemotherapy 42, 294-307

159F. Magaraci (2003) Azasterols as inhibitors of sterol 24-methyltransferase in Leishmania species and Trypanosoma cruzi. Journal of Medicinal Chemistry 46, 4714-4727

160S.O. Lorente (2004) Novel azasterols as potential agents for treatment of leishmaniasis and trypanosomiasis. Antimicrobial Agents and Chemotherapy 48, 2937-2950

161L. Gros (2006) Evaluation of azasterols as anti-parasitics. Journal of Medicinal Chemistry 49, 6094-6103

162F. Gigante (2009) SAR studies on azasterols as potential anti-trypanosomal and anti-leishmanial agents. Bioorganic and Medicinal Chemistry 17, 5950-5961

163L. Gros (2006) New azasterols against Trypanosoma brucei: role of 24-sterol methyltransferase in inhibitor action. Antimicrobial Agents and Chemotherapy 50, 2595-2601

164J.J. Cazzulo (1989) Further characterization and partial amino acid sequence of a cysteine proteinase from Trypanosoma cruzi. Molecular and Biochemical Parasitology 33, 33-41

165A.C. Murta (1990) Structural and functional identification of GP57/51 antigen of Trypanosoma cruzi as a cysteine proteinase. Molecular and Biochemical Parasitology 43, 27-38

167C.R. Caffrey (2001) Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Molecular and Biochemical Parasitology 118, 61-73

168A.P. Lima (1994) Identification of new cysteine protease gene isoforms in Trypanosoma cruzi. Molecular and Biochemical Parasitology 67, 333-338

169M.P. Garcia (1998) Characterisation of a Trypanosoma cruzi acidic 30 kDa cysteine protease. Molecular and Biochemical Parasitology 91, 263-272

170O.T. Nobrega (1998) Cloning and sequencing of tccb, a gene encoding a Trypanosoma cruzi cathepsin B-like protease. Molecular and Biochemical Parasitology 97, 235-240

171Z.B. Mackey (2004) A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei. Journal of Biological Chemistry 279, 48426-48433

172C.R. Caffrey and D. Steverding (2009) Kinetoplastid papain-like cysteine peptidases. Molecular and Biochemical Parasitology 167, 12-19

173J.H. McKerrow , M.E. McGrath and J.C. Engel (1995) The cysteine protease of Trypanosoma cruzi as a model for antiparasite drug design. Parasitology Today 11, 279-282

174J.C. Engel (1998) Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. Journal of Experimental Medicine 188, 725-734

175X. Du (2000) Aryl ureas represent a new class of anti-trypanosomal agents. Chemistry and Biology 7, 733-742

176W.R. Roush (2001) Potent second generation vinyl sulfonamide inhibitors of the trypanosomal cysteine protease cruzain. Bioorganic and Medicinal Chemistry Letters 11, 2759-2762

177X. Du (2002) Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. Journal of Medicinal Chemistry 45, 2695-2707

178D.C. Greenbaum (2004) Synthesis and structure-activity relationships of parasiticidal thiosemicarbazone cysteine protease inhibitors against Plasmodium falciparum, Trypanosoma brucei, and Trypanosoma cruzi. Journal of Medicinal Chemistry 47, 3212-3219

179N.J. Nkemgu (2003) Improved trypanocidal activities of cathepsin L inhibitors. International Journal of Antimicrobial Agents 22, 155-1559

180P.S. Doyle (2007) A cysteine protease inhibitor cures Chagas' disease in an immunodeficient-mouse model of infection. Antimicrobial Agents and Chemotherapy 51, 3932-3939

181Y.T. Chen (2008) Synthesis of macrocyclic trypanosomal cysteine protease inhibitors. Bioorganic and Medicinal Chemistry Letters 18, 5860-5863

182J.P. Mallari (2008) Discovery of trypanocidal thiosemicarbazone inhibitors of rhodesain and TbcatB. Bioorganic and Medicinal Chemistry Letters 18, 2883-2885

183J.P. Mallari (2008) Development of potent purine-derived nitrile inhibitors of the trypanosomal protease TbcatB. Journal of Medicinal Chemistry 51, 545-552

184M.E. McGrath (1995) The crystal structure of cruzain: a therapeutic target for Chagas' disease. Journal of Molecular Biology 247, 251-259

186L. Huang , L.S. Brinen and J.A. Ellman (2003) Crystal structures of reversible ketone-Based inhibitors of the cysteine protease cruzain. Bioorganic and Medicinal Chemistry 11, 21-29

187Y. Choe (2005) Development of alpha-keto-based inhibitors of cruzain, a cysteine protease implicated in Chagas disease. Bioorganic and Medicinal Chemistry 13, 2141-2156

188I.D. Kerr (2009) Vinyl sulfones as antiparasitic agents: A structural basis for drug design. Journal of Biological Chemistry 284, 25697-25703

189A.M. Tomas , M.A. Miles and J.M. Kelly (1997) Overexpression of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, is associated with enhanced metacyclogenesis. European Journal of Biochemistry 244, 596-603

190M.H. Abdulla (2008) RNA interference of Trypanosoma brucei cathepsin B and L affects disease progression in a mouse model. PLoS Neglected Tropical Diseases 2, e298

191R.L. Krauth-Siegel and M.A. Comini (2008) Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochimica et Biophysica Acta 1780, 1236-1248

192R.L. Krauth-Siegel and O. Inhoff (2003) Parasite-specific trypanothione reductase as a drug target molecule. Parasitology Research 90, S77-85

193T. Jaeger and L. Flohe (2006) The thiol-based redox networks of pathogens: unexploited targets in the search for new drugs. Biofactors 27, 109-120

194M.A. Comini , R.L. Krauth-Siegel and L. Flohe (2007) Depletion of the thioredoxin homologue tryparedoxin impairs antioxidative defence in African trypanosomes. Biochemical Journal 402, 43-49

195M.A. Comini (2004) Valdiation of Trypanosoma brucei trypanothione synthetase as drug target. Free Radical Biology and Medicine 36, 1289-1302

196M.R. Ariyanayagam (2005) Phenotypic analysis of trypanothione synthetase knockdown in the African trypanosome. Biochemical Journal 391, 425-432

197S. Wyllie (2009) Dissecting the essentiality of the bifunctional trypanothione synthetase-amidase in Trypanosoma brucei using chemical and genetic methods. Molecular Microbiology Jun 24; [Epub ahead of print]

198M.C. Jockers-Scherubl , R.H. Schirmer and R.L. Krauth-Siegel (1989) Trypanothione reductase from Trypanosoma cruzi. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds. European Journal of Biochemistry 180, 267-272

199A. Fournet (1998) Trypanocidal bisbenzylisoquinoline alkaloids are inhibitors of trypanothione reductase. Journal of Enzyme Inhibition 13, 1-9

200C.L. Zani (1997) Anti-plasmodial and anti-trypanosomal activity of synthetic naphtho[2,3-b]thiopen-4,9-quinones. Bioorganic and Medicinal Chemistry 5, 2185-2192

201C.S. Bond (1999) Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure 7, 81-89

202H. Gallwitz (1999) Ajoene is an inhibitor and subversive substrate of human glutathione reductase and Trypanosoma cruzi trypanothione reductase: crystallographic, kinetic, and spectroscopic studies. Journal of Medicinal Chemistry 42, 364-372

203A. Fournet (2000) Efficacy of the bisbenzylisoquinoline alkaloids in acute and chronic Trypanosoma cruzi murine model. International Journal of Antimicrobial Agents 13, 189-195

204L. Salmon-Chemin (2000) Parallel synthesis of a library of 1,4-naphthoquinones and automated screening of potential inhibitors of trypanothione reductase from Trypanosoma cruzi. Bioorganic and Medicinal Chemistry Letters 10, 631-635

205L. Salmon-Chemin (2001) 2- and 3-substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity. Journal of Medicinal Chemistry 44, 548-565

206C.L. Zani and A.H. Fairlamb (2003) 8-Methoxy-naphtho[2,3-b]thiophen-4,9-quinone, a non-competitive inhibitor of trypanothione reductase. Memorias do Instituto Oswaldo Cruz 98, 565-568

207C.J. Hamilton (2003) Ellman's-reagent-mediated regeneration of trypanothione in situ: substrate-economical microplate and time-dependent inhibition assays for trypanothione reductase. Biochemical Journal 369, 529-537

208C.J. Hamilton (2003) Benzofuranyl 3,5-bis-polyamine derivatives as time-dependent inhibitors of trypanothione reductase. Bioorganic and Medicinal Chemistry 11, 3683-3693

209C.J. Hamilton (2006) Time-dependent inhibitors of trypanothione reductase: analogues of the spermidine alkaloid lunarine and related natural products. Bioorganic and Medicinal Chemistry 14, 2266-2278

210B. Stump (2007) Betraying the parasite's redox system: diaryl sulfide-based inhibitors of trypanothione reductase: subversive substrates and antitrypanosomal properties. ChemMedChem 2, 1708-1712

211D.C. Martyn (2007) High-throughput screening affords novel and selective trypanothione reductase inhibitors with anti-trypanosomal activity. Bioorganic and Medicinal Chemistry Letters 17, 1280-1283

212J.A. Czechowicz (2007) The synthesis and inhibitory activity of dethiotrypanothione and analogues against trypanothione reductase. Journal of Organic Chemistry 72, 3689-3693

213B. Stump (2009) Pentafluorosulfanyl as a novel building block for enzyme inhibitors: trypanothione reductase inhibition and antiprotozoal activities of diarylamines. Chembiochem 10, 79-83

214B. Stump (2008) Diaryl sulfide-based inhibitors of trypanothione reductase: inhibition potency, revised binding mode and antiprotozoal activities. Organic and Biomolecular Chemistry 6, 3935-3947

215G.A. Holloway (2009) Trypanothione reductase high-throughput screening campaign identifies novel classes of inhibitors with antiparasitic activity. Antimicrobial Agents and Chemotherapy 53, 2824-2833

216G.A. Holloway (2007) Discovery of 2-iminobenzimidazoles as a new class of trypanothione reductase inhibitor by high-throughput screening. Bioorganic and Medicinal Chemistry Letters 17, 1422-1427

217A. Cavalli (2009) Privileged structure-guided synthesis of quinazoline derivatives as inhibitors of trypanothione reductase. Bioorganic and Medicinal Chemistry Letters 19, 3031-3035

218J.L. Richardson (2009) Improved tricyclic inhibitors of trypanothione reductase by screening and chemical synthesis. ChemMedChem 4, 1333-1340

219S. Patterson (2009) Synthesis and evaluation of 1-(1-(Benzo[b]thiophen-2-yl)cyclohexyl)piperidine (BTCP) analogues as inhibitors of trypanothione reductase. ChemMedChem 4, 1341-1353

220Y. Zhang (1993) Trypanosoma cruzi trypanothione reductase. Crystallization, unit cell dimensions and structure solution. Journal of Molecular Biology 232, 1217-1220

221C.B. Lantwin (1994) The structure of Trypanosoma cruzi trypanothione reductase in the oxidized and NADPH reduced state. Proteins 18, 161-173

222E.M. Jacoby (1996) Crystal structure of the Trypanosoma cruzi trypanothione reductase.mepacrine complex. Proteins 24, 73-80

223Y. Zhang (1996) The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 A resolution. Protein Science 5, 52-61

224A. Saravanamuthu (2004) Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase: a template for drug design. Journal of Biological Chemistry 279, 29493-29500

225S. Meiering (2005) Inhibitors of Trypanosoma cruzi trypanothione reductase revealed by virtual screening and parallel synthesis. Journal of Medicinal Chemistry 48, 4793-4802

226I.V. Ogungbe and W.N. Setzer (2009) Comparative molecular docking of antitrypanosomal natural products into multiple Trypanosoma brucei drug targets. Molecules 14, 1513-1536

227M.S. Alphey (2003) Tryparedoxins from Crithidia fasciculata and Trypanosoma brucei: photoreduction of the redox disulfide using synchrotron radiation and evidence for a conformational switch implicated in function. Journal of Biological Chemistry 278, 25919-25925

228M.S. Alphey , J. Konig and A.H. Fairlamb (2008) Structural and mechanistic insights into type II trypanosomatid tryparedoxin-dependent peroxidases. Biochemical Journal 414, 375-381

229J. Melchers (2008) Structural basis for a distinct catalytic mechanism in Trypanosoma brucei tryparedoxin peroxidase. Journal of Biological Chemistry 283, 30401-30411

230A.J. Bitonti , S.E. Kelly and P.P. McCann (1984) Characterization of spermidine synthase from Trypanosoma brucei brucei. Molecular and Biochemical Parasitology 13, 21-28

231B.L. Tekwani , C.J. Bacchi and A.E. Pegg (1992) Putrescine activated S-adenosylmethionine decarboxylase from Trypanosoma brucei brucei. Molecular and Cellular Biochemistry 117, 53-61

232N. Yarlett (1993) S-adenosylmethionine synthetase in bloodstream Trypanosoma brucei. Biochimica et Biophysica Acta 1181, 68-76

233M.C. Taylor (2008) Validation of spermidine synthase as a drug target in African trypanosomes. Biochemical Journal 409, 563-569

234T.T. Huynh (2003) Gene knockdown of gamma-glutamylcysteine synthetase by RNAi in the parasitic protozoa Trypanosoma brucei demonstrates that it is an essential enzyme. Journal of Biological Chemistry 278, 39794-39800

235Y. Xiao , D.E. McCloskey and M.A. Phillips (2009) RNA interference-mediated silencing of ornithine decarboxylase and spermidine synthase genes in Trypanosoma brucei provides insight into regulation of polyamine biosynthesis. Eukaryotic Cell 8, 747-755

236B.L. Tekwani (1992) Irreversible inhibition of S-adenosylmethionine decarboxylase of Trypanosoma brucei brucei by S-adenosylmethionine analogues. Biochemical Pharmacology 44, 905-911

237J. Guo (1995) S-(5′-deoxy-5′-adenosyl)-1-aminoxy-4-(methylsulfonio)-2-cyclopentene (AdoMao): an irreversible inhibitor of S-adenosylmethionine decarboxylase with potent in vitro antitrypanosomal activity. Journal of Medicinal Chemistry 38, 1770-1777

239C.J. Marasco Jr , (2002) Synthesis and evaluation of analogues of 5′-([(Z)-4-amino-2-butenyl]methylamino)-5′-deoxyadenosine as inhibitors of tumor cell growth, trypanosomal growth, and HIV-1 infectivity. Journal of Medicinal Chemistry 45, 5112-5122

240B. Hirth (2009) Discovery of new S-adenosylmethionine decarboxylase inhibitors for the treatment of human African trypanosomiasis (HAT). Bioorganic and Medicinal Chemistry Letters 19, 2916-2919

241A.J. Bitonti (1990) Cure of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense infections in mice with an irreversible inhibitor of S-adenosylmethionine decarboxylase. Antimicrobial Agents and Chemotherapy 34, 1485-1490

242C.J. Bacchi (1992) Cure of murine Trypanosoma brucei rhodesiense infections with an S-adenosylmethionine decarboxylase inhibitor. Antimicrobial Agents and Chemotherapy 36, 2736-2740

244T.L. Byers (1991) Antitrypanosomal effects of polyamine biosynthesis inhibitors correlate with increases in Trypanosoma brucei brucei S-adenosyl-L-methionine. Biochemical Journal 274, 527-533

245C.J. Bacchi (2009) Trypanocidal activity of 8-methyl-5′-{[(Z)-4-aminobut-2-enyl]-(methylamino)}adenosine (Genz-644131), an adenosylmethionine decarboxylase inhibitor. Antimicrobial Agents and Chemotherapy 53, 3269-3272

246R.H. Barker Jr (2009) Novel S-adenosylmethionine decarboxylase inhibitors for the treatment of human African trypanosomiasis. Antimicrobial Agents and Chemotherapy 53, 2052-2058

247G. Priotto (2007) Nifurtimox-eflornithine combination therapy for second-stage Trypanosoma brucei gambiense sleeping sickness: a randomized clinical trial in Congo. Clinical Infectious Disease 45, 1435-1442

249B.P. Das and D.W. Boykin (1977) Synthesis and antiprotozoal activity of 2,5-bis(4-guanylphenyl)furans. Journal of Medicinal Chemistry 20, 531-536

250J.H. Ansede (2005) In vitro metabolism of an orally active O-methyl amidoxime prodrug for the treatment of CNS trypanosomiasis. Xenobiotica 35, 211-226

251J.E. Conte Jr (1986) Use of a specific and sensitive assay to determine pentamidine pharmacokinetics in patients with AIDS. Journal of Infectious Diseases 154, 923-929

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Expert Reviews in Molecular Medicine
  • ISSN: -
  • EISSN: 1462-3994
  • URL: /core/journals/expert-reviews-in-molecular-medicine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×