Skip to main content
×
Home
    • Aa
    • Aa

METRIC $X_{p}$ INEQUALITIES

  • ASSAF NAOR (a1) and GIDEON SCHECHTMAN (a2)
Abstract

For every $p\in (0,\infty )$ we associate to every metric space $(X,d_{X})$ a numerical invariant $\mathfrak{X}_{p}(X)\in [0,\infty ]$ such that if $\mathfrak{X}_{p}(X)<\infty$ and a metric space $(Y,d_{Y})$ admits a bi-Lipschitz embedding into $X$ then also $\mathfrak{X}_{p}(Y)<\infty$ . We prove that if $p,q\in (2,\infty )$ satisfy $q then $\mathfrak{X}_{p}(L_{p})<\infty$ yet $\mathfrak{X}_{p}(L_{q})=\infty$ . Thus, our new bi-Lipschitz invariant certifies that $L_{q}$ does not admit a bi-Lipschitz embedding into $L_{p}$ when $2 . This completes the long-standing search for bi-Lipschitz invariants that serve as an obstruction to the embeddability of $L_{p}$ spaces into each other, the previously understood cases of which were metric notions of type and cotype, which however fail to certify the nonembeddability of $L_{q}$ into $L_{p}$ when $2 . Among the consequences of our results are new quantitative restrictions on the bi-Lipschitz embeddability into $L_{p}$ of snowflakes of $L_{q}$ and integer grids in $\ell _{q}^{n}$ , for $2 . As a byproduct of our investigations, we also obtain results on the geometry of the Schatten $p$ trace class $S_{p}$ that are new even in the linear setting.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      METRIC $X_{p}$ INEQUALITIES
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      METRIC $X_{p}$ INEQUALITIES
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      METRIC $X_{p}$ INEQUALITIES
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

C. A. Akemann , J. Anderson  and G. K. Pedersen , ‘Triangle inequalities in operator algebras’, Linear Multilinear Algebra 11(2) (1982), 167178.

F. Albiac  and F. Baudier , ‘Embeddability of snowflaked metrics with applications to the nonlinear geometry of the spaces Lp and p for 0 < p < ’, J. Geom. Anal. 25(1) (2015), 124.

T. Ando  and X. Zhan , ‘Norm inequalities related to operator monotone functions’, Math. Ann. 315(4) (1999), 771780.

J. S. Aujla  and J.-C. Bourin , ‘Eigenvalue inequalities for convex and log-convex functions’, Linear Algebra Appl. 424(1) (2007), 2535.

K. Ball , ‘Markov chains, Riesz transforms and Lipschitz maps’, Geom. Funct. Anal. 2(2) (1992), 137172.

K. Ball , E. A. Carlen  and E. H. Lieb , ‘Sharp uniform convexity and smoothness inequalities for trace norms’, Invent. Math. 115(3) (1994), 463482.

Y. Bartal , N. Linial , M. Mendel  and A. Naor , ‘On metric Ramsey-type phenomena’, Ann. of Math. (2) 162(2) (2005), 643709.

R. Bhatia , Matrix Analysis, Graduate Texts in Mathematics, 169 (Springer, New York, 1997).

J. Bourgain , ‘Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms’, inGeometrical Aspects of Functional Analysis (1985/86), Lecture Notes in Mathematics, 1267 (Springer, Berlin, 1987), 157167.

J.-C. Bourin  and M. Uchiyama , ‘A matrix subadditivity inequality for f (A + B) and f (A) + f (B)’, Linear Algebra Appl. 423(2–3) (2007), 512518.

E. A. Carlen  and E. H. Lieb , ‘A Minkowski type trace inequality and strong subadditivity of quantum entropy. II. Convexity and concavity’, Lett. Math. Phys. 83(2) (2008), 107126.

P. Enflo , ‘On the nonexistence of uniform homeomorphisms between Lp -spaces’, Ark. Mat. 8 (1969), 103105.

H. Epstein , ‘Remarks on two theorems of E. Lieb’, Comm. Math. Phys. 31 (1973), 317325.

O. Giladi , A. Naor  and G. Schechtman , ‘Bourgain’s discretization theorem’, Ann. Fac. Sci. Toulouse Math. (6) 21(4) (2012), 817837.

W. B. Johnson , G. Schechtman  and J. Zinn , ‘Best constants in moment inequalities for linear combinations of independent and exchangeable random variables’, Ann. Probab. 13(1) (1985), 234253.

N. J. Kalton , ‘The nonlinear geometry of Banach spaces’, Rev. Mat. Complut. 21(1) (2008), 760.

N. J. Kalton  and N. L. Randrianarivony , ‘The coarse Lipschitz geometry of lplq’, Math. Ann. 341(1) (2008), 223237.

J. R. Lee , A. Naor  and Y. Peres , ‘Trees and Markov convexity’, Geom. Funct. Anal. 18(5) (2009), 16091659.

N. Linial , A. Magen  and A. Naor , ‘Girth and Euclidean distortion’, Geom. Funct. Anal. 12(2) (2002), 380394.

J. Matoušek , Lectures on Discrete Geometry, Graduate Texts in Mathematics, 212 (Springer, New York, 2002).

C. A. McCarthy , ‘cp’, Israel J. Math. 5 (1967), 249271.

M. Mendel  and A. Naor , ‘Euclidean quotients of finite metric spaces’, Adv. Math. 189(2) (2004), 451494.

M. Mendel  and A. Naor , ‘Some applications of Ball’s extension theorem’, Proc. Amer. Math. Soc. 134(9) (2006), 25772584. (electronic).

M. Mendel  and A. Naor , ‘Scaled Enflo type is equivalent to Rademacher type’, Bull. Lond. Math. Soc. 39(3) (2007), 493498.

M. Mendel  and A. Naor , ‘Metric cotype’, Ann. of Math. (2) 168(1) (2008), 247298.

M. Mendel  and A. Naor , ‘Markov convexity and local rigidity of distorted metrics’, J. Eur. Math. Soc. (JEMS) 15(1) (2013), 287337.

M. Mendel  and A. Naor , ‘Nonlinear spectral calculus and super-expanders’, Publ. Math. Inst. Hautes Études Sci. 119 (2014), 195.

M. Mendel  and A. Naor , ‘Expanders with respect to Hadamard spaces and random graphs’, Duke Math. J. 164(8) (2015), 14711548.

A. Naor , ‘An introduction to the Ribe program’, Jpn. J. Math. 7(2) (2012), 167233.

A. Naor  and Y. Peres , ‘Lp compression, traveling salesmen, and stable walks’, Duke Math. J. 157(1) (2011), 53108.

A. Naor , Y. Peres , O. Schramm  and S. Sheffield , ‘Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces’, Duke Math. J. 134(1) (2006), 165197.

R. E. A. C. Paley , ‘Some theorems on abstract spaces’, Bull. Amer. Math. Soc. 42(4) (1936), 235240.

G. Pisier , ‘Probabilistic methods in the geometry of Banach spaces’, inProbability and Analysis (Varenna, 1985), Lecture Notes in Mathematics, 1206 (Springer, Berlin, 1986), 167241.

G. Pisier  and Q. Xu , ‘Non-commutative Lp-spaces’, inHandbook of the Geometry of Banach Spaces, Vol. 2 (North-Holland, Amsterdam, 2003), 14591517.

M. Ribe , ‘On uniformly homeomorphic normed spaces’, Ark. Mat. 14(2) (1976), 237244.

H. P. Rosenthal , ‘On the subspaces of Lp(p > 2 spanned by sequences of independent random variables’, Israel J. Math. 8 (1970), 273303.

I. J. Schoenberg , ‘Metric spaces and positive definite functions’, Trans. Amer. Math. Soc. 44(3) (1938), 522536.

M. Talagrand , ‘Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis’ graph connectivity theorem’, Geom. Funct. Anal. 3(3) (1993), 295314.

E. Veomett  and K. Wildrick , ‘Spaces of small metric cotype’, J. Topol. Anal. 2(4) (2010), 581597.

R. Wagner , ‘Notes on an inequality by Pisier for functions on the discrete cube’, inGeometric Aspects of Functional Analysis, Lecture Notes in Mathematics, 1745 (Springer, Berlin, 2000), 263268.

J. H. Wells  and L. R. Williams , Embeddings and Extensions in Analysis (Springer, New York, Heidelberg, 1975), Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Forum of Mathematics, Pi
  • ISSN: -
  • EISSN: 2050-5086
  • URL: /core/journals/forum-of-mathematics-pi
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 139 *
Loading metrics...

Abstract views

Total abstract views: 222 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th August 2017. This data will be updated every 24 hours.