Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T13:52:24.076Z Has data issue: false hasContentIssue false

Fano-type surfaces with large cyclic automorphisms

Published online by Cambridge University Press:  05 August 2021

Joaquín Moraga*
Affiliation:
Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ08544-1000, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a characterisation of Fano-type surfaces with large cyclic automorphisms. As an application, we give a characterisation of Kawamata log terminal $3$ -fold singularities with large class groups of rank at least $2$ .

Type
Algebraic and Complex Geometry
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2021. Published by Cambridge University Press

References

Alexeev, V., ‘Boundedness and ${K}^2$ for log surfaces’, Internat . J. Math. 5(6) (1994), 779810.Google Scholar
Ambro, F., ‘The moduli b-divisor of an $b$ -trivial fibration’, Compos. Math. 141(2) (2005), 385403.CrossRefGoogle Scholar
Birkar, C., ‘Boundedness of $\epsilon$ -log canonical complements on surfaces’, Preprint, 2004, https://arxiv.org/abs/math/0409254.Google Scholar
Birkar, C., ‘Anti-pluricanonical systems on Fano varieties’, Ann. of Math. (2) 190(2) (2019), 345463.CrossRefGoogle Scholar
Birkar, C., ‘Singularities of linear systems and boundedness of Fano varieties’, Ann. of Math. (2) 193(2) (2021), 347405.CrossRefGoogle Scholar
Birkar, C., Cascini, P., Hacon, C. D. and McKernan, J., ‘Existence of minimal models for varieties of log general type’, J. Amer. Math. Soc. 23(2) (2010), 405468.CrossRefGoogle Scholar
Brown, M. V., McKernan, J., Svaldi, R. and Zong, H. R., ‘A geometric characterization of toric varieties’, Duke Math. J. 167(5) (2018), 923968.CrossRefGoogle Scholar
Cheltsov, I. and Shramov, C., ‘On exceptional quotient singularities’, Geom. Topol. 15(4) (2011), 18431882.CrossRefGoogle Scholar
Cheltsov, I. and Shramov, C., ‘Six-dimensional exceptional quotient singularities’, Math. Res. Lett. 18(6) (2011), 11211139.CrossRefGoogle Scholar
Cheltsov, I. and Shramov, C., ‘Nine-dimensional exceptional quotient singularities exist’, in Proceedings of the Gökova Geometry-Topology Conference 2011 (International Press, Somerville, MA, 2012), 8596.Google Scholar
Cheltsov, I. A., ‘Regularization of birational automorphisms’, Mat. Zametki 76(2) (2004), 286299 (Russian, with Russian summary); English transl.: Math. Notes 76(1–2) (2004), 264–275.Google Scholar
Cox, D. A., Little, J. B. and Schenck, H. K., Toric Varieties, Graduate Studies in Mathematics vol. 124 (American Mathematical Society, Providence, RI, 2011).Google Scholar
, D.A. Cox, ‘The homogeneous coordinate ring of a toric variety’, J. Algebraic Geom. 4(1) (1995), 1750.Google Scholar
Dolgachev, I. V., Classical Algebraic Geometry (Cambridge University Press, Cambridge, 2012).CrossRefGoogle Scholar
Filipazzi, S. and Moraga, J., ‘Strong $\left(\delta, n\right)$ -complements for semi-stable morphisms’, Doc. Math. 25 (2020), 19531996.Google Scholar
Fujiki, A., Kobayashi, R. and Lu, S., ‘On the fundamental group of certain open normal surfaces’, Saitama Math. J. 11 (1993), 1520.Google Scholar
Fulton, W., Introduction to Toric Varieties, The William H. Roever Lectures in Geometry, Annals of Mathematics Studies vol. 131 (Princeton University Press, Princeton, NJ, 1993).CrossRefGoogle Scholar
Gurjar, R. V. and Zhang, D.-Q., ‘ ${\pi}_1$ of smooth points of a log del Pezzo surface is finite. I’, J. Math. Sci. Univ. Tokyo 1(1) (1994), 137180.Google Scholar
Gurjar, R. V. and Zhang, D.-Q., ‘ ${\pi}_1$ of smooth points of a log del Pezzo surface is finite. II’, J. Math. Sci. Univ. Tokyo 2(1) (1995), 165196.Google Scholar
Hacon, C. D. and Han, J., ‘On a connectedness principle of Shokurov-Kollár type’, Sci. China Math. 62(3) (2019), 411416.CrossRefGoogle Scholar
Hacon, C. D. and Kovács, S. J., Classification of Higher Dimensional Algebraic Varieties, Oberwolfach Seminars vol. 41 (Birkhäuser Verlag, Basel, 2010).CrossRefGoogle Scholar
Hosoh, T., ‘Automorphism groups of quartic del Pezzo surfaces’, J. Algebra 185(2) (1996), 374389 $.$ CrossRefGoogle Scholar
Keel, S. and McKernan, J., ‘Rational curves on quasi-projective surfaces’, Mem. Amer. Math. Soc. 140(669) (1999).Google Scholar
Kollár, J. and others (eds), Flips and Abundance for Algebraic Threefolds, Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque 211 (Société Mathématique de France, Paris, 1992).Google Scholar
Kollár, J., Singularities of the Minimal Model Program, Cambridge Tracts in Mathematics vol. 200 (Cambridge University Press, Cambridge, 2013). With the collaboration of S. Kovács.CrossRefGoogle Scholar
Kollár, J. and Kovács, S. J., ‘Log canonical singularities are Du Bois’, J. Amer. Math. Soc. 23(3) (2010), 791813.CrossRefGoogle Scholar
Kollár, J. and Mori, S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics vol. 134 (Cambridge University Press, Cambridge, 1998). With the collaboration of C. H. Clemens and A. Corti; translated from the 1998 Japanese original.CrossRefGoogle Scholar
Li, C. and Xu, C., ‘Stability of valuations and Kollár components’, J. Eur. Math. Soc. (JEMS) 22(8) (2020), 25732627.CrossRefGoogle Scholar
Manin, Y. I. and Hazewinkel, M., Cubic Forms: Algebra, Geometry, Arithmetic, North-Holland Mathematical Library vol. 4 (North-Holland Publishing Co., Amsterdam; American Elsevier Publishing Co., New York, 1974). Translated from the Russian by M. Hazewinkel.Google Scholar
Nakayama, N., ‘A variant of Shokurov’s criterion of toric surface’, in Algebraic Varieties and Automorphism Groups, Advanced Studies in Pure Mathematics vol. 75 (Mathematical Society of Japan, Tokyo, 2017), 287392.CrossRefGoogle Scholar
Prokhorov, Y., ‘A note on degenerations of del Pezzo surfaces’, Ann. Inst. Fourier (Grenoble) 65(1) (2015), 369388.CrossRefGoogle Scholar
Prokhorov, Y. and Shramov, C., ‘Jordan property for groups of birational selfmaps’, Compos. Math. 150(12) (2014), 20542072.CrossRefGoogle Scholar
Prokhorov, Y. and Shramov, C., ‘Jordan property for Cremona groups’, Amer. J. Math. 138(2) (2016), 403418.CrossRefGoogle Scholar
Prokhorov, Y. and Shramov, C., ‘Jordan constant for Cremona group of rank 3’, Mosc. Math. J. 17(3) (2017), 457509.CrossRefGoogle Scholar
Prokhorov, Y. G. and Shokurov, V. V., ‘The first main theorem on complements: From global to local’, Izv. Math. 65(6) (2001), 11691196.CrossRefGoogle Scholar
Shokurov, V. V., ‘Three-dimensional log perestroikas’, Izv. Ross. Akad. Nauk Ser. Mat. 56(1) (1992), 105203 (Russian); English transl.: Russ. Acad. Sci. Izv. Math. 40(1) (1993), 95–202.Google Scholar
Shokurov, V. V., ‘Complements on surfaces’, J. Math. Sci. (N.Y.) 102(2) (2000), 38763932.CrossRefGoogle Scholar
Stibitz, C., ‘Étale covers and local algebraic fundamental groups’, Preprint, 2017, https://arxiv.org/abs/1707.08611.Google Scholar
Tian, Z. and Xu, C., ‘Finiteness of fundamental groups’, Compos. Math. 153(2) (2017), 257273.CrossRefGoogle Scholar
Xu, C., ‘Notes on ${\pi}_1$ of smooth loci of log del Pezzo surfaces’, Michigan Math. J. 58(2) (2009), 489515.CrossRefGoogle Scholar
Xu, C., ‘Finiteness of algebraic fundamental groups’, Compos. Math. 150(3) (2014), 409414.CrossRefGoogle Scholar