Hostname: page-component-7d684dbfc8-8ckrc Total loading time: 0 Render date: 2023-09-24T23:50:48.270Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

The Carnian Humid Episode of the late Triassic: a review

Published online by Cambridge University Press:  03 August 2015

School of Geography, Archaeology & Palaeoecology, Queen's University, Belfast, BT7 1NN, N. Ireland
National Museums Northern Ireland, Cultra, Holywood, Co. Down, BT18 0EU, N. Ireland
School of Earth and Environment, The University of Leeds, Leeds, LS2 9JT, UK
Author for correspondence:


From 1989 to 1994 a series of papers outlined evidence for a brief episode of climate change from arid to humid, and then back to arid, during the Carnian Stage of the late Triassic Epoch. This time of climate change was compared to marine and terrestrial biotic changes, mainly extinction and then radiation of flora and fauna. Subsequently termed, albeit incorrectly, the Carnian Pluvial Event (CPE) by successive authors, interest in this episode of climatic change has increased steadily, with new evidence being published as well as several challenges to the theory. The exact nature of this humid episode, whether reflecting widespread precipitation or more local effects, as well as its ultimate cause, remains equivocal. Bed-by-bed sampling of the Carnian in the Southern Alps (Dolomites) shows the episode began with a negative carbon isotope excursion that lasted for only part of one ammonoid zone (A. austriacum). However, that the Carnian Humid Episode represents a significantly longer period, both environmentally and biotically, is irrefutable. The evidence is strongest in the European, Middle Eastern, Himalayan, North American and Japanese successions, but not always so clear in South America, Antarctica and Australia. The eruption of the Wrangellia Large Igneous Province and global warming (causing increased evaporation in the Tethyan and Panthalassic oceans) are suggested as causes for the humid episode.

Review Article
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Angermeier, H. O., Poschil, A. & Schneider, H. J. 1963. Die Gliederung der Raibler Schichten und die Ausbildung ihrer Liegendgrenze in der “Tirolischen Einheit” der ostlichen Chiemgauer Alpen. Mitteilungen der Bayerischen Staatssammlung der Paläontologie und Historische Geologie 3, 83105.Google Scholar
Arche, A. & Lopez-Gomez, J. 2014. The Carnian Pluvial Event in Western Europe: new data from Iberia and correlation with the Western Neotethys and Eastern North America–NW Africa regions. Earth-Science Reviews 128, 196231.CrossRefGoogle Scholar
Awatar, R., Tewari, R., Agnihotri, D., Chatterjee, S., Pillai, S. S. K. & Meena, K. L. 2014. Late Permian and Triassic palynomorphs from the Allan Hills, central Transantarctic Mountains, South Victoria Land. Antarctica. Current Science 106, 988–96.Google Scholar
Bialik, M., Korngreen, D. & Benjamini, C. 2013. Carnian (Triassic) aridization on the Levant margin: evidence from the M1 member, Mohilla Formation, Makhtesh Ramon, south Israel. Facies 59, 559–81.CrossRefGoogle Scholar
Brugman, W. A. & Visscher, H. 1988. Permian and Triassic palynostratigraphy of northeast Libya. In Subsurface Palynostratigraphy of Northeast Libya (eds El-Arnauti, A., Owens, B. & Thusu, B.), pp. 157–70. Benghazi: Special Publication, Garyounis University Press.Google Scholar
Buratti, N. & Cirilli, S. 2007. Microfloristic provincialism in the Upper Triassic Circum-Mediterranean area and palaeogeographic implication. Geobios 40, 133–42.CrossRefGoogle Scholar
Cleveland, D. M., Atchley, S. C. & Nordt, L. C. 2007. Continental sequence stratigraphy of the Upper Triassic (Norian–Rhaetian) Chinle Strata, northern New Mexico, U.S.A.: allocyclic and autocyclic origins of paleosol-bearing alluvial successions. Journal of Sedimentary Research 77, 909–24.CrossRefGoogle Scholar
Crowley, T. J. 1994. Pangean climates. In Pangea, Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith and Breakup of a Supercontinent (eds Klein, G. D.), pp. 25–39. Geological Society of America, Special Paper no. 288.Google Scholar
Dal Corso, J., Mietto, P., Newton, R. J., Pancost, R. D., Preto, N., Roghi, G. & Wignall, P. B. 2012. Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts. Geology 40, 7982.CrossRefGoogle Scholar
Dolby, J. H. & Balme, B. E. 1976. Triassic palynology of the Carnarvon Basin, Western Australia. Review of Palaeobotany and Palynology 22, 105–68.CrossRefGoogle Scholar
Driese, S. G. & Mora, C. I. 2002. Paleopedology and stable-isotope geochemistry of late Triassic (Carnian–Norian) paleosols, Durham sub-basin, North Carolina, U.S.A.: implications for paleoclimate and paleoatmospheric pCO2 . In Sedimentation in Continental Rifts (eds Renaut, R. W. & Ashley, G. M.), pp. 207–18. SEPM Special Publication no. 73.CrossRefGoogle Scholar
Druckman, Y., Hirsch, F. & Weissbrod, T. 1982. The Triassic of the southern margin of the Tethys in the Levant and its correlation across the Jordan Rift Valley. Geologische Rundschau 71, 919–36.CrossRefGoogle Scholar
Dubiel, R. F. 1989. Depositional and climatic setting of the Upper Triassic Chinle Formation, Colorado Plateau. In Dawn of the Age of Dinosaurs in the American Southwest (eds Lucas, S. G. & Hunt, A. P.), pp. 171–87. New Mexico Museum of Natural History Spring Field Conference Guidebook, Albuquerque, NM.Google Scholar
Dubiel, R. F., Parrish, J. T., Parrish, J. M. & Good, S. C. 1991. The Pangaean megamonsoon evidence from the Upper Triassic Chinle Formation, Colorado Plateau. Palaios 6, 347–70.CrossRefGoogle Scholar
Fijałkowska-Mader, A. 1999. Palynostratigraphy, palaeoecology and palaeoclimatology of the Triassic in south-eastern Poland. Zentralblatt für Geologie und Paläontologie 1, 601–27.Google Scholar
Furin, S., Preto, N., Rigo, M., Gianolla, P., Crowley, J. L. & Bowring, S. A. 2006. High-precision U–Pb zircon age from the Triassic of Italy: implications for the Triassic time scale and the Carnian origin of calcareous nannoplankton and dinosaurs. Geology 34, 1009–12.CrossRefGoogle Scholar
Goggin, V. & Jacquin, T. 1998. A sequence stratigraphic framework of the marine and continental Triassic series in the Paris Basin, France. In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (eds de Graciansky, P. C., Hardenbol, J., Jacquin, T. & Vail, P.), pp. 667–90. SEPM Special Publication no. 60.Google Scholar
Golonka, J. 2007. Phanerozoic paleoenvironment and paleolithofacies maps. Mesozoic. Geologia 33, 211–64.Google Scholar
Greene, A. R., Scoates, J. S. & Weis, D. 2008. Wrangellia flood basalts in Alaska: a record of plume-lithosphere interaction in a Late Triassic accreted oceanic plateau. Geochemistry, Geophysics, Geosystems 9. doi: 10.1029/2008GC002092.CrossRefGoogle Scholar
Haas, J., Budai, T., Gyoori, O. & Kele, S. 2014. Multiphase partial and selective dolomitization of Carnian reef limestone (Transdanubian Range, Hungary). Sedimentology 61, 836–59.CrossRefGoogle Scholar
Hochuli, P. A. & Frank, S. M. 2000. Palynology (dinoflagellate cysts, sporepollen) and stratigraphy of the Lower Carnian Raibl Group in the Eastern Swiss Alps. Eclogae Geologicae Helvetiae 93, 429–43.Google Scholar
Hornung, T. 2008. The Carnian Crisis in the Tethys Realm. Saarbrücken: VDM Verlag Dr. Mueller. 252 pp.Google Scholar
Hornung, T., Krystyn, L. & Brandner, R. 2007. A Tethys-wide mid-Carnian (Upper Triassic) carbonate productivity crisis: evidence for the Alpine Reingraben Event from Spiti (Indian Himalaya)? Journal of Asian Earth Sciences 30, 285302.CrossRefGoogle Scholar
Ji, L. & Meng, F. 2006. Palynology of Yanchang Formation of Middle and Late Triassic in Eastern Gansu Province and its paleoclimatic significance. Journal of China University of Geosciences 17, 209–20.CrossRefGoogle Scholar
Kolar-Jurkovsek, T. & Jurkovsek, B. 2010. New paleontological evidence of the Carnian strata in the Mežica area (Karavanke Mountains, Slovenia): conodont data for the Carnian Pluvial Event. Palaeogeography, Palaeoclimatology, Palaeoecology 290, 81–8.CrossRefGoogle Scholar
Korte, C., Kozur, H. W. & Veizer, J. 2005. δ13C and δ18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature. Palaeogeography, Palaeoclimatology, Palaeoecology 226, 287306.CrossRefGoogle Scholar
Kozur, H. 1972. Vorläufige Mitteilung zur Parallelisierung der germanischen und tethyalen Trias sowie einige Bemerkungen zur Stufen- und Unterstufengliederung der Trias. Mitteilungen Gestalt Geologischen Bergbaustud. Innsbruck 21, 623–60.Google Scholar
Kozur, H. 1975. Probleme der Triasgliederung und Parallelisierung der germanischen und tethyalen Trias. Teil II: Anschluß der germanischen Trias an die international Triasgliederung. Freiburger Forstliche Forschung C304, 5177.Google Scholar
Kozur, H. & Bachman, G. H. 2010. The Middle Carnian wet intermezzo of the Stuttgart Formation (Schilfsanstein), Germanic Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 290, 107–19.CrossRefGoogle Scholar
Lehrmann, D. J., Enos, P., Payne, J. L., Montgomery, P., Wei, J., Yu, Y., Xiao, J. & Orchard, M. J. 2005. Permian and Triassic depositional history of the Yangtze Platform and Great Bank of Guizhou in the Nanpanjiang Basin of Guizhou and Guangxi, south China. Albertiana 33, 149–69.Google Scholar
Litwin, R. J., Traverse, A. & Ash, S. R. 1991. Preliminary palynological zonation of the Chinle Formation, southwestern U.S.A., and its correlation to the Newark Supergroup (eastern U.S.A.). Review of Palaeobotany and Palynology 68, 269–87.CrossRefGoogle Scholar
Lucas, S. G. & Orchard, M. J. 2013. Triassic. Reference Module in Earth Systems and Environmental Sciences, pp. 19. Elsevier. doi: 10.1016/B978-0-12-409548-9.02872-4.Google Scholar
Magaritz, M. & Druckman, Y. 1984. Carbon isotope composition of an Upper Triassic evaporite section in Israel; evidence for meteoric water influx. American Association of Petroleum Geologists Bulletin 68, 502.Google Scholar
Martini, R., Zaninetti, L., Lathuillière, B., Cirilli, S., Cornée, J.-J. & Villeneuve, M. 2004. Upper Triassic carbonate deposits of Seram (Indonesia): palaeogeographic and geodynamic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 206, 75102.CrossRefGoogle Scholar
Martini, R., Zaninetti, L., Villeneuve, M., Cornée, J.-J., Krystyn, L., Cirilli, S., De Wever, P., Dumitrica, P. & Harsolumakso, A. 2000. Triassic pelagic deposits of Timor: palaeogeographic and sea-level implications. Palaeogeography, Palaeoclimatology, Palaeoecology 16, 123–51.CrossRefGoogle Scholar
McKie, T. 2014. Climatic and tectonic controls on Triassic dryland terminal fluvial system architecture, central North Sea. In From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin (eds Martinius, A. W., Ravn, R., Howell, J. A., Steel, R. J. & Wonham, J. P.), pp. 1958. International Association of Sedimentologists, Special Publication 46. Chichester: John Wiley & Sons, Ltd.Google Scholar
McLoughlin, S. & Drinnan, A. N. 1997. Fluvial sedimentology and revised stratigraphy of the Triassic Flagstone Bench Formation, northern Prince Charles Mountains, East Antarctica. Geological Magazine 134, 781806.CrossRefGoogle Scholar
McLoughlin, S., Lindstrom, S. & Drinnan, A. N. 1997. Gondwanan floristic and sedimentological trends during the Permian–Triassic transition: new evidence from the Amery Group, northern Prince Charles Mountains, East Antarctica. Antarctic Science 9, 281–98.CrossRefGoogle Scholar
Nakada, R., Ogawa, K., Suzuki, N., Takahashi, S. & Takahashi, Y. 2014. Late Triassic compositional changes of aeolian dusts in the pelagic Panthalassa: response to the continental climatic change. Palaeogeography, Palaeoclimatology, Palaeoecology 393, 6175.CrossRefGoogle Scholar
Nielsen, S. N. 2005. The Triassic Santa Juana Formation at the lower Biobio River, south central Chile. Journal of South American Earth Sciences 19, 547–62.CrossRefGoogle Scholar
Olsen, P. E. 1980. The latest Triassic and Early Jurassic formations of the Newark Basin (Eastern North America, Newark Supergroup): stratigraphy, structure, and correlation. New Jersey Academy of Science Bulletin 25, 2551.Google Scholar
Olsen, P. E. & Kent, D. V. 1999. Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the early Mesozoic time scale and the long-term behavior of the planets. Philosophical Transactions of the Royal Society of London (Series A) 357, 1761–87.CrossRefGoogle Scholar
Olsen, P. E., Kent, D. V., Cornet, B., Witte, W. K. & Schlisse, R. W. 1996. High-resolution stratigraphy of the Newark Basin (Early Mesozoic, Eastern North America). Geological Society of American Bulletin 108, 4077.2.3.CO;2>CrossRefGoogle Scholar
Peron, S., Bourquin, S., Fluteau, F. & Guillocheau, F. 2005. Paleoenvironment reconstructions and climate simulations of the Early Triassic: impact of the water and sediment supply on the preservation of fluvial systems. Geodinimica Acta 18, 431–46.CrossRefGoogle Scholar
Porter, R. & Gallois, R. 2008. Identifying fluvio-lacustrine intervals in thick playa-lake successions: an integrated sedimentology and ichnology of arenaceous members in the mid–late Triassic Mercia Mudstone Group of south-west England, UK. Palaeogeography, Palaeoclimatology, Palaeoecology 270, 381–98.CrossRefGoogle Scholar
Pott, C., Krings, M. & Kerp, H. 2008. The Carnian (Late Triassic) flora from Lunz in Lower Austria: paleoecological considerations. Palaeoworld 17, 172–82.CrossRefGoogle Scholar
Price, G. D. 1999. The evidence and implications of polar ice during the Mesozoic. Earth-Science Reviews 48, 183210.CrossRefGoogle Scholar
Prochnow, S. J., Nordt, L. C., Atchley, S. C. & Hudec, M. R. 2006. Multiproxy paleosol evidence for middle and late Triassic climate trends in eastern Utah. Palaeogeography, Palaeoclimatology, Palaeoecology 232, 5372.CrossRefGoogle Scholar
Rao, C. P. 1988. Paleoclimate of some Permo-Triassic carbonates of Malaysia. Sedimentary Geology 60, 163–71.Google Scholar
Retallack, G. J. & Alonso-Zarza, A. M. 1998. Middle Triassic paleosols and paleoclimate of Antarctica. Journal of Sedimentary Research 68, 169–84.CrossRefGoogle Scholar
Retallack, G. J., Veevers, J. J. & Morante, R. 1996. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. Geological Society of America Bulletin 108, 195207.2.3.CO;2>CrossRefGoogle Scholar
Rigo, M., Preto, N., Roghi, G., Tateo, F. & Mietto, P. 2007, A rise in the carbonate compensation depth of western Tethys in the Carnian (Late Triassic): deep-water evidence for the Carnian Pluvial Event. Palaeogeography, Palaeoclimatology, Palaeoecology 246, 188205.CrossRefGoogle Scholar
Roghi, G. 2004. Palynological investigations in the Carnian of the Cave del Predil area (Julian Alps, NE Italy). Review of Palaeobotany and Palynology 132, 135.CrossRefGoogle Scholar
Roghi, G., Gianolla, P., Minarelli, L., Pilati, C. & Preto, N. 2010, Palynological correlation of Carnian humid pulses throughout western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology 290, 89106.CrossRefGoogle Scholar
Rostasi, A., Raucsik, B. & Varga, A. 2011. Palaeoenvironmental controls on the clay mineralogy of Carnian sections from the Transdanubian Range (Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology 300, 101–12.CrossRefGoogle Scholar
Ruffell, A. 1991. Palaeoenvironmental analysis of the late Triassic succession in the Wessex Basin and correlation with surrounding areas. Proceedings of the Ussher Society 7, 402–7.Google Scholar
Ruffell, A. & Shelton, R. G. 1999. The control of sedimentary facies by climate during phases of crustal extension: examples from the Triassic of onshore and offshore England and Northern Ireland. Journal of the Geological Society, London 156, 779–89.CrossRefGoogle Scholar
Ruffell, A. & Warrington, G. 1988. An arenaceous member in the Mercia Mudstone Group (Triassic) west of Taunton, Somerset. Proceedings of the Ussher Society 7, 102–3.Google Scholar
Schlager, W. & Schollnberger, W. 1974. Das Prinzip stratigraphischer Wendenin der Schichtenfolge der Nordlichen Kalkalpen. Mitteilungen der Geologischen Gesellschaft Wien 66/67, 165–93.Google Scholar
Shi, Z., Qian, L., Xiong, Z. & Zeng, D. 2010. Carnian crisis occurring in SW China and its ideational origin. Acta Metallurgica Sinica 29, 227–32.Google Scholar
Shukla, U. M., Bachmann, G. H. & Singh, I. B. 2010. Facies architecture of the Stuttgart Formation (Schilfsandstein, Upper Triassic), central Germany, and its comparison with modern Ganga system, India. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 110–28.CrossRefGoogle Scholar
Simms, M. J. & Ruffell, A. H. 1989. Synchroneity of climatic change in the late Triassic. Geology 17, 265–8.2.3.CO;2>CrossRefGoogle Scholar
Simms, M. J. & Ruffell, A. H. 1990. Climatic and biotic change in the Late Triassic. Journal of the Geological Society, London 147, 321–7.CrossRefGoogle Scholar
Simms, M. J., Ruffell, A. H. & Johnson, A. L. 1994. Biotic and climatic change in the Carnian (Triassic) of Europe and adjacent areas. In In the Shadow of the Dinosaurs (eds Fraser, N. C. & Sues, H.-D.), pp. 352–65. Cambridge: Cambridge University Press.Google Scholar
Tabor, N. J., Montanez, I. P., Kelso, K. A., Currie, B., Shipman, T. & Colombi, C. 2006. A Late Triassic soil catena: landscape and climate controls on paleosol morphology and chemistry across the Carnian-age Ischigualasto-Villa Union basin, northwestern Argentina. In Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates (eds Alonso-Zarza, A. M. & Tanner, L. H.), pp. 1741. Geological Society of America, Special Paper no. 416.CrossRefGoogle Scholar
Tang, Z., Parnell, J. & Ruffell, A. 1994. Diagenesis and reservoir potential of Permian-Triassic fluvial/lacustrine sandstones in the southern Junggar Basin, northwestern China. Journal of Paleolimnology 11, 6790.CrossRefGoogle Scholar
Visscher, H., Van Houte, M., Brugman, W. A. & Poort, P. R. 1994. Rejection of a Carnian (Late Triassic) “pluvial event” in Europe. Review of Palaeobotany & Palynology 83, 217–26.CrossRefGoogle Scholar
Wurster, P. 1964. Geologie des Schilfsandsteins. Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg 33, 1140.Google Scholar
Xu, G., Hannah, J. L., Stein, H. J., Mark, A., Vigran, J. O., Bingen, B., Sschutt, D. L. & Lundschein, B. A. 2014. Cause of Upper Triassic climate crisis revealed by Re–Os geochemistry of Boreal black shales. Palaeogeography, Palaeoclimatology, Palaeoecology 395, 222–32.CrossRefGoogle Scholar
Zerfass, H., Lavina, E. L., Schultz, C. L., Vasconelles Garcia, A. J., Faccini, U. F. & Chemale, F. 2003. Sequence stratigraphy of continental Triassic strata of southernmost Brazil: a contribution of southwestern Gondwana palaeogeography and palaeoclimate. Sedimentary Geology 161, 85105.CrossRefGoogle Scholar