Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T00:38:37.985Z Has data issue: false hasContentIssue false

FOURIER-TYPE TRANSFORMS ON REARRANGEMENT-INVARIANT QUASI-BANACH FUNCTION SPACES

Published online by Cambridge University Press:  20 June 2018

KWOK-PUN HO*
Affiliation:
Department of Mathematics and Information Technology, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong, China e-mail: vkpho@eduhk.hk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We establish the mapping properties of Fourier-type transforms on rearrangement-invariant quasi-Banach function spaces. In particular, we have the mapping properties of the Laplace transform, the Hankel transforms, the Kontorovich-Lebedev transform and some oscillatory integral operators. We achieve these mapping properties by using an interpolation functor that can explicitly generate a given rearrangement-invariant quasi-Banach function space via Lebesgue spaces.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2018 

References

REFERENCES

1. Bennett, C. and Sharpley, R., Interpolations of operators (Academic Press, Orlando, Florida, 1988).Google Scholar
2. Bergh, J. and Löfström, L., Interpolation spaces (Springer-Verlag, Berlin, Heidelberg, 1976).Google Scholar
3. Carli, L., On the L p-L q norm of the Hankel transform and related operators, J. Math. Anal. Appl. 348 (2008), 366382.Google Scholar
4. Colzani, L., Crespi, A., Travaglini, G. and Vignati, M., Equiconvergence theorems for Fourier-Bessel expansions with applications to the harmonic analysis of radical functions in Euclidean and non-Euclidean spaces, Trans. Amer. Math. Soc. 338 (1975), 4355.Google Scholar
5. Curbera, G., García-Cuerva, J.Martell, J. and Pérez, C., Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals, Adv. Math. 203 (2006), 256318.Google Scholar
6. Edmunds, D. E., Kerman, R. and Pick, L., Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal. 170 (2000), 307355.Google Scholar
7. Edmunds, D. E. and Evans, W. D., Hardy operators, function spaces and embeddings (Springer, Berlin, Heidelberg, 2004).Google Scholar
8. Folland, G., Real analysis: Modern techniques and their applications (John Wiley & Sons, New York, 1984).Google Scholar
9. Gogatishvilli, A., Opic, B. and Trebels, W., Limiting reiteration for real interpolation with slowly varying functions, Math. Nachr. 278 (2005), 86107.Google Scholar
10. Hankel, H., Die Fourier'schen reihen und integrale der cylinderfunctionen, Math. Ann. 8 (1875), 471494.Google Scholar
11. Heinig, H. and Lee, A., A. sharp Paley-Titchmarsh inequalities in Orlicz spaces, Real Anal. Exchange 21 (1995–96), 244257.Google Scholar
12. Ho, K.-P., Littlewood-Paley spaces, Math. Scand. 108 (2011), 77102.Google Scholar
13. Ho, K.-P., Fourier integrals and Sobolev embedding on rearrangement-invariant quasi-Banach function spaces, Ann. Acad. Sci. Fenn. Math. 41 (2016), 897922.Google Scholar
14. Ho, K.-P., Hardy's inequalities on Hardy spaces, Proc. Japan Acad. Ser. A Math. Sci. 92 (2016), 125130.Google Scholar
15. Ho, K.-P., Modular interpolation and modular estimate of Fourier transform and related operators, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 28 (2017), 349368.Google Scholar
16. Ho, K.-P., Fourier integral operators, k-plane transforms and circular maximal function on rearrangement-invariant quasi-Banach function spaces (preprint).Google Scholar
17. Holmstedt, T., Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177199.Google Scholar
18. Hömander, L., Fourier integral operators, Acta Math. 127 (1971), 79183.Google Scholar
19. Hömander, L., Oscillatory integrals and multipliers on FL p, Ark. Mat. 11 (1973), 111.Google Scholar
20. Kalton, N., Peck, N., and Roberts, J., An F-space sampler, London Mathematical Society, Lecture Note Series, 89 (Cambridge University Press, Cambridge, 1984).Google Scholar
21. Kerman, R., Generalized Hankel conjugate transformations on rearrangement invariant spaces, Trans. Amer. Math. Soc. 232 (1977), 111130.Google Scholar
22. Lindenstrauss, J. and Tzafriri, L., Classical banach spaces I and II (Springer, Berlin, Heidelberg, 1996).Google Scholar
23. Montgomery-Smith, S., The Hardy operator and Boyd indices, in Interaction between probability, harmonic analysis and functional analysis, (Kalton, N., Montgomery-Smith, S. J. and Saab, E.), Lecture Notes in Pure and Applied Mathematics, 175 (Marcel Dekker, New York, 1995).Google Scholar
24. Neves, J., Lorentz-Karamata spaces, Bessel and Riesz potentials and embeddings, Dissertationes Math. (Rozprawy Mat.) 405 (2002), 146.Google Scholar
25. Okada, S., Ricker, W. and Pérez, E. Sánchez, Optimal domain and integral extension of operators (Birkhäuser Basel, Basel, 2008).Google Scholar
26. Persson, L., Interpolation with a parameter function, Math. Scand. 59 (1986), 199222.Google Scholar
27. Sawano, Y., K.-P. Ho, D. Yang and S. Yang, Hardy spaces for ball quasi-Banach function spaces, Dissertationes Math. (Rozprawy Mat.) 525 (2017), 1102.Google Scholar
28. Sogge, C., Fourier integrals in classical analysis, Cambridge Tracts in Math. 105 (Cambridge University Press, Cambridge, 1993).Google Scholar
29. Triebel, H., Interpolation theory, function spaces, differential operators (North-Holland, 1978).Google Scholar
30. Yakubovich, S., L p-Boundedness of general index transforms, Lith. Math. J. 45 (2005), 102122.Google Scholar