In this article, we introduce a new logarithmic Q-type space  $Q_{\ln ,\lambda }^{p,l,k}(\mathbb R^{n})$ to study the well-posedness of the classical/fractional Naiver–Stokes equations. We show that
$Q_{\ln ,\lambda }^{p,l,k}(\mathbb R^{n})$ to study the well-posedness of the classical/fractional Naiver–Stokes equations. We show that  $\nabla \cdot (Q_{\ln ,\lambda }^{p,l,k}(\mathbb R^{n}))^{n}$ covers the well-known critical spaces
$\nabla \cdot (Q_{\ln ,\lambda }^{p,l,k}(\mathbb R^{n}))^{n}$ covers the well-known critical spaces  $BMO^{-1}(\mathbb R^{n}), Q_{\alpha }^{-1}(\mathbb R^{n})$ and
$BMO^{-1}(\mathbb R^{n}), Q_{\alpha }^{-1}(\mathbb R^{n})$ and  $\mathcal {Q}_{0}^{-1}(\mathbb R^{n})$ for the classical Naiver–Stokes equations. Moreover, it covers the fractional counterparts
$\mathcal {Q}_{0}^{-1}(\mathbb R^{n})$ for the classical Naiver–Stokes equations. Moreover, it covers the fractional counterparts  $BMO^{-(2\beta -1)}(\mathbb R^{n}), Q_{\alpha }^{\beta ,-1}(\mathbb R^{n})$ and even the largest critical space
$BMO^{-(2\beta -1)}(\mathbb R^{n}), Q_{\alpha }^{\beta ,-1}(\mathbb R^{n})$ and even the largest critical space  $\dot {B}^{-(2\beta -1)}_{\infty ,\infty }(\mathbb R^{n}).$ In doing so, we first establish some basic properties of
$\dot {B}^{-(2\beta -1)}_{\infty ,\infty }(\mathbb R^{n}).$ In doing so, we first establish some basic properties of  $Q_{\ln ,\lambda }^{p,l,k}(\mathbb {R}^{n}).$ Then, via the fractional heat semigroups, we characterize the extension of
$Q_{\ln ,\lambda }^{p,l,k}(\mathbb {R}^{n}).$ Then, via the fractional heat semigroups, we characterize the extension of  $Q_{\ln ,\lambda }^{p,l,k}(\mathbb R^{n})$ to
$Q_{\ln ,\lambda }^{p,l,k}(\mathbb R^{n})$ to  $\mathscr H_{K_{\ln }^{(l,k)}}^{p,\lambda }(\mathbb R_+^{n+1})$ which is a function space related to the weight function
$\mathscr H_{K_{\ln }^{(l,k)}}^{p,\lambda }(\mathbb R_+^{n+1})$ which is a function space related to the weight function  $K_{\ln }^{(l,k)}(\cdot )$. This extension provides a semigroup characterization of
$K_{\ln }^{(l,k)}(\cdot )$. This extension provides a semigroup characterization of  $Q_{\ln ,\lambda }^{p,l,k}(\mathbb R^{n})$. With this in hand, we establish the well-posedness of mild solutions to fractional Naiver–Stokes equations and fractional magneto-hydrodynamic equations, respectively, with small data in
$Q_{\ln ,\lambda }^{p,l,k}(\mathbb R^{n})$. With this in hand, we establish the well-posedness of mild solutions to fractional Naiver–Stokes equations and fractional magneto-hydrodynamic equations, respectively, with small data in  $\nabla \cdot \left (Q_{\ln ,\frac {4(1-\beta )}{n}}^{2,k,l+2(1-\beta )}(\mathbb {R}^{n})\right )^{n}$ for
$\nabla \cdot \left (Q_{\ln ,\frac {4(1-\beta )}{n}}^{2,k,l+2(1-\beta )}(\mathbb {R}^{n})\right )^{n}$ for  $k\in \mathbb {N}$ and
$k\in \mathbb {N}$ and  $l>n+2\beta -4.$
$l>n+2\beta -4.$