We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We explore the regularity theory of optimal transport maps for costs satisfying a Ma–Trudinger–Wang condition, by viewing the graphs of the transport maps as maximal Lagrangian surfaces with respect to an appropriate pseudo-Riemannian metric on the product space. We recover the local regularity theory in two-dimensional manifolds.
We study the existence and regularity of minimizers of the neo-Hookean energy in the closure of classes of deformations without cavitation. The exclusion of cavitation is imposed in the form of the divergence identities, which is equivalent to the well-known condition (INV) with $\operatorname{Det} = \operatorname{det}$. We show that the neo-Hookean energy admits minimizers in classes of maps that are one-to-one a.e. with positive Jacobians, provided that these maps are the weak limits of sequences of maps that satisfy the divergence identities. In particular, these classes include the weak closure of diffeomorphisms and the weak closure of homeomorphisms satisfying Lusin’s condition N. Moreover, if the minimizers satisfy condition (INV), then their inverses have Sobolev regularity. This extends a recent result by Doležalová, Hencl, and Molchanova by showing that the minimizers they obtained enjoy extra regularity properties and that the existence of minimizers can still be obtained even when their coercivity assumption is relaxed.
We introduce a general class of transport distances $\mathrm {WB}_{\Lambda }$ over the space of positive semi-definite matrix-valued Radon measures $\mathcal {M}(\Omega, \mathbb {S}_+^n)$, called the weighted Wasserstein–Bures distance. Such a distance is defined via a generalised Benamou–Brenier formulation with a weighted action functional and an abstract matricial continuity equation, which leads to a convex optimisation problem. Some recently proposed models, including the Kantorovich–Bures distance and the Wasserstein–Fisher–Rao distance, can naturally fit into ours. We give a complete characterisation of the minimiser and explore the topological and geometrical properties of the space $(\mathcal {M}(\Omega, \mathbb {S}_+^n),\mathrm {WB}_{\Lambda })$. In particular, we show that $(\mathcal {M}(\Omega, \mathbb {S}_+^n),\mathrm {WB}_{\Lambda })$ is a complete geodesic space and exhibits a conic structure.
Recently it has been shown that the unique local perimeter minimizing partitioning of the plane into three regions, where one region has finite area and the other two have infinite measure, is given by the so-called standard lens partition. Here we prove a sharp stability inequality for the standard lens, hence strengthening the local minimality of the lens partition in a quantitative form. As an application of this stability result we consider a nonlocal perturbation of an isoperimetric problem.
Let $\Omega \subset \mathbb{R}^d$ with $d\geq 2$ be a bounded domain of class ${\mathcal C}^{1,\beta }$ for some $\beta \in (0,1)$. For $p\in (1, \infty )$ and $s\in (0,1)$, let $\Lambda ^s_{p}(\Omega )$ be the first eigenvalue of the mixed local–nonlocal operator $-\Delta _p+(-\Delta _p)^s$ in Ω with the homogeneous nonlocal Dirichlet boundary condition. We establish a strict Faber–Krahn-type inequality for $\Lambda _{p}^s(\cdot )$ under polarization. As an application of this strict inequality, we obtain the strict monotonicity of $\Lambda _{p}^s(\cdot )$ over the annular domains and characterize the rigidity property of the balls in the classical Faber–Krahn inequality for $-\Delta _p+(-\Delta _p)^s$.
In this short note, we review results on equilibrium shapes of minimizers to the sessile drop problem. More precisely, we study the Winterbottom problem and prove that the Winterbottom shape is indeed optimal. The arguments presented here are based on relaxation and the (anisotropic) isoperimetric inequality.
In this paper, we give necessary and sufficient conditions for the rigidity of the perimeter inequality under Schwarz symmetrization. The term rigidity refers to the situation in which the equality cases are only obtained by translations of the symmetric set. In particular, we prove that the sufficient conditions for rigidity provided in M. Barchiesi, F. Cagnetti and N. Fusco [Stability of the Steiner symmetrization of convex sets. J. Eur. Math. Soc. 15 (2013), 1245-1278.] are also necessary.
Let $\mu $ and $\nu $ be Borel probability measures on complete separable metric spaces X and Y, respectively. Each Borel probability measure $\gamma $ on $X\times Y$ with marginals $\mu $ and $\nu $ can be described through its disintegration $\big ( \gamma _{x}\big )_{x \in X}$ with respect to the initial distribution $\mu .$ Assume that $\mu $ is continuous, i.e., $\mu \big (\{x\}\big )=0$ for all $x \in X.$ We shall analyze the structure of the support of the measure $\gamma $ provided $\text {card } \big (\mathrm{spt} (\gamma _{x}) \big )$ is finitely countable for $\mu $-a.e. $x\in X.$ We shall also provide an application to optimal mass transportation.
In this paper, we study the functional given by the integral of the mean curvature of a convex set with Gaussian weight with Gaussian volume constraint. It was conjectured that the ball centred at the origin is the only minimizer of such a functional for certain values of the mass. We prove that this is the case in dimension 2 while in higher dimension the situation is different. In fact, for small values of mass, the ball centred at the origin is a local minimizer, while for larger values the ball is a maximizer among convex sets with a uniform bound on the curvature.
In this note, we establish a boundary maximum principle for a class of stationary pairs of varifolds satisfying a fixed contact angle condition in any compact Riemannian manifold with smooth boundary.
We provide a fine description of the weak limit of sequences of regular axisymmetric maps with equibounded neo-Hookean energy, under the assumption that they have finite surface energy. We prove that these weak limits have a dipole structure, showing that the singular map described by Conti and De Lellis is generic in some sense. On this map, we provide the explicit relaxation of the neo-Hookean energy. We also make a link with Cartesian currents showing that the candidate for the relaxation we obtained presents strong similarities with the relaxed energy in the context of $\mathbb {S}^2$-valued harmonic maps.
We prove that for a homogeneous linear partial differential operator $\mathcal {A}$ of order $k \le 2$ and an integrable map $f$ taking values in the essential range of that operator, there exists a function $u$ of special bounded variation satisfying
This extends a result of G. Alberti for gradients on $\mathbf {R}^N$. In particular, for $0 \le m < N$, it is shown that every integrable $m$-vector field is the absolutely continuous part of the boundary of a normal $(m+1)$-current.
We prove topological regularity results for isoperimetric sets in PI spaces having a suitable deformation property, which prescribes a control on the increment of the perimeter of sets under perturbations with balls. More precisely, we prove that isoperimetric sets are open, satisfy boundary density estimates and, under a uniform lower bound on the volumes of unit balls, are bounded. Our results apply, in particular, to the class of possibly collapsed $\mathrm {RCD}(K,N)$ spaces. As a consequence, the rigidity in the isoperimetric inequality on possibly collapsed $\mathrm {RCD}(0,N)$ spaces with Euclidean volume growth holds without the additional assumption on the boundedness of isoperimetric sets. Our strategy is of interest even in the Euclidean setting, as it simplifies some classical arguments.
We analyse the $\Gamma$-convergence of general non-local convolution type functionals with varying densities depending on the space variable and on the symmetrized gradient. The limit is a local free-discontinuity functional, where the bulk term can be completely characterized in terms of an asymptotic cell formula. From that, we can deduce an homogenisation result in the stochastic setting.
Let ${\mathcal {D}}$ and $T$ be, respectively, a $C^1$ distribution of $k$-planes and a normal $k$-current on ${\mathbb {R}}^n$. Then ${\mathcal {D}}$ has to be involutive at almost every superdensity point of the tangency set of $T$ with respect to ${\mathcal {D}}$.
Motivated by some models of pattern formation involving an unoriented director field in the plane, we study a family of unoriented counterparts to the Aviles–Giga functional. We introduce a nonlinear $\operatorname {\mathrm {curl}}$ operator for such unoriented vector fields as well as a family of even entropies which we call ‘trigonometric entropies’. Using these tools, we show two main theorems which parallel some results in the literature on the classical Aviles–Giga energy. The first is a compactness result for sequences of configurations with uniformly bounded energies. The second is a complete characterization of zero-states, that is, the limit configurations when the energies go to 0. These are Lipschitz continuous away from a locally finite set of points, near which they form either a vortex pattern or a disclination with degree 1/2. The proof is based on a combination of regularity theory together with techniques coming from the study of the Ginzburg–Landau energy. Our methods provide alternative proofs in the classical Aviles–Giga context.
Given an open, bounded set $\Omega $ in $\mathbb {R}^N$, we consider the minimization of the anisotropic Cheeger constant $h_K(\Omega )$ with respect to the anisotropy K, under a volume constraint on the associated unit ball. In the planar case, under the assumption that K is a convex, centrally symmetric body, we prove the existence of a minimizer. Moreover, if $\Omega $ is a ball, we show that the optimal anisotropy K is not a ball and that, among all regular polygons, the square provides the minimal value.
We obtain a measure representation for a functional arising in the context of optimal design problems under linear growth conditions. The functional in question corresponds to the relaxation with respect to a pair $(\chi,u)$, where $\chi$ is the characteristic function of a set of finite perimeter and $u$ is a function of bounded deformation, of an energy with a bulk term depending on the symmetrized gradient as well as a perimeter term.
The main result of the present article is a Rademacher-type theorem for intrinsic Lipschitz graphs of codimension
$k\leq n$
in sub-Riemannian Heisenberg groups
${\mathbb H}^{n}$
. For the purpose of proving such a result, we settle several related questions pertaining both to the theory of intrinsic Lipschitz graphs and to the one of currents. First, we prove an extension result for intrinsic Lipschitz graphs as well as a uniform approximation theorem by means of smooth graphs: both of these results stem from a new definition (equivalent to the one introduced by B. Franchi, R. Serapioni and F. Serra Cassano) of intrinsic Lipschitz graphs and are valid for a more general class of intrinsic Lipschitz graphs in Carnot groups. Second, our proof of Rademacher’s theorem heavily uses the language of currents in Heisenberg groups: one key result is, for us, a version of the celebrated constancy theorem. Inasmuch as Heisenberg currents are defined in terms of Rumin’s complex of differential forms, we also provide a convenient basis of Rumin’s spaces. Eventually, we provide some applications of Rademacher’s theorem including a Lusin-type result for intrinsic Lipschitz graphs, the equivalence between
${\mathbb H}$
-rectifiability and ‘Lipschitz’
${\mathbb H}$
-rectifiability and an area formula for intrinsic Lipschitz graphs in Heisenberg groups.
Using the calculus of variations, we prove the following structure theorem for noise-stable partitions: a partition of n-dimensional Euclidean space into m disjoint sets of fixed Gaussian volumes that maximise their noise stability must be $(m-1)$-dimensional, if $m-1\leq n$. In particular, the maximum noise stability of a partition of m sets in $\mathbb {R}^{n}$ of fixed Gaussian volumes is constant for all n satisfying $n\geq m-1$. From this result, we obtain:
(i) A proof of the plurality is stablest conjecture for three candidate elections, for all correlation parameters $\rho $ satisfying $0<\rho <\rho _{0}$, where $\rho _{0}>0$ is a fixed constant (that does not depend on the dimension n), when each candidate has an equal chance of winning.
(ii) A variational proof of Borell’s inequality (corresponding to the case $m=2$).
The structure theorem answers a question of De–Mossel–Neeman and of Ghazi–Kamath–Raghavendra. Item (i) is the first proof of any case of the plurality is stablest conjecture of Khot-Kindler-Mossel-O’Donnell for fixed $\rho $, with the case $\rho \to L1^{-}$ being solved recently. Item (i) is also the first evidence for the optimality of the Frieze–Jerrum semidefinite program for solving MAX-3-CUT, assuming the unique games conjecture. Without the assumption that each candidate has an equal chance of winning in (i), the plurality is stablest conjecture is known to be false.