We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We extend a result of Lopes and Thieullen [Sub-actions for Anosov flows. Ergod. Th. & Dynam. Sys.25(2) (2005), 605–628] on sub-actions for smooth Anosov flows to the setting of geodesic flow on locally CAT($-1$) spaces. This allows us to use arguments originally due to Croke and Dairbekov to prove a volume rigidity theorem for some interesting locally CAT($-1$) spaces, including quotients of Fuchsian buildings and surface amalgams.
Let (W, S) be a Coxeter system of rank n, and let $p_{(W, S)}(t)$ be its growth function. It is known that $p_{(W, S)}(q^{-1}) \lt \infty$ holds for all $n \leq q \in \mathbb{N}$. In this paper, we will show that this still holds for $q = n-1$, if (W, S) is 2-spherical. Moreover, we will prove that $p_{(W, S)}(q^{-1}) = \infty$ holds for $q = n-2$, if the Coxeter diagram of (W, S) is the complete graph. These two results provide a complete characterization of the finiteness of the growth function in the case of 2-spherical Coxeter systems with a complete Coxeter diagram.
Let W be a group endowed with a finite set S of generators. A representation $(V,\rho )$ of W is called a reflection representation of $(W,S)$ if $\rho (s)$ is a (generalized) reflection on V for each generator $s \in S$. In this article, we prove that for any irreducible reflection representation V, all the exterior powers $\bigwedge ^d V$, $d = 0, 1, \dots , \dim V$, are irreducible W-modules, and they are non-isomorphic to each other. This extends a theorem of R. Steinberg which is stated for Euclidean reflection groups. Moreover, we prove that the exterior powers (except for the 0th and the highest power) of two non-isomorphic reflection representations always give non-isomorphic W-modules. This allows us to construct numerous pairwise non-isomorphic irreducible representations for such groups, especially for Coxeter groups.
We introduce a general class of transport distances $\mathrm {WB}_{\Lambda }$ over the space of positive semi-definite matrix-valued Radon measures $\mathcal {M}(\Omega, \mathbb {S}_+^n)$, called the weighted Wasserstein–Bures distance. Such a distance is defined via a generalised Benamou–Brenier formulation with a weighted action functional and an abstract matricial continuity equation, which leads to a convex optimisation problem. Some recently proposed models, including the Kantorovich–Bures distance and the Wasserstein–Fisher–Rao distance, can naturally fit into ours. We give a complete characterisation of the minimiser and explore the topological and geometrical properties of the space $(\mathcal {M}(\Omega, \mathbb {S}_+^n),\mathrm {WB}_{\Lambda })$. In particular, we show that $(\mathcal {M}(\Omega, \mathbb {S}_+^n),\mathrm {WB}_{\Lambda })$ is a complete geodesic space and exhibits a conic structure.
Given any smooth germ of a 3-fold flopping contraction, we first give a combinatorial characterisation of which Gopakumar–Vafa (GV) invariants are non-zero, by prescribing multiplicities to the walls in the movable cone. On the Gromov–Witten (GW) side, this allows us to describe, and even draw, the critical locus of the associated quantum potential. We prove that the critical locus is the infinite hyperplane arrangement of Iyama and the second author and, moreover, that the quantum potential can be reconstructed from a finite fundamental domain. We then iterate, obtaining a combinatorial description of the matrix that controls the transformation of the non-zero GV invariants under a flop. There are three main ingredients and applications: (1) a construction of flops from simultaneous resolution via cosets, which describes how the dual graph changes; (2) a closed formula, which describes the change in dimension of the contraction algebra under flop; and (3) a direct and explicit isomorphism between quantum cohomologies of different crepant resolutions, giving a Coxeter-style, visual proof of the Crepant Transformation Conjecture for isolated cDV singularities.
Let $\sigma _q \,:\,{{\mathbb{R}}^q} \to{\textbf{S}}^q\setminus N_q$ be the inverse of the stereographic projection with center the north pole $N_q$. Let $W_i$ be a closed subset of ${\mathbb{R}}^{q_i}$, for $i=1,2$. Let $\Phi \,:\,W_1 \to W_2$ be a bi-Lipschitz homeomorphism. The main result states that the homeomorphism $\sigma _{q_2}\circ \Phi \circ \sigma _{q_1}^{-1}$ is a bi-Lipschitz homeomorphism, extending bi-Lipschitz-ly at $N_{q_1}$ with value $N_{q_2}$ whenever $W_1$ is unbounded.
As two straightforward applications in the polynomially bounded o-minimal context over the real numbers, we obtain for free a version at infinity of: (1) Sampaio’s tangent cone result and (2) links preserving re-parametrization of definable bi-Lipschitz homeomorphisms of Valette.
In 1968, Steinberg [Endomorphisms of Linear Algebraic Groups, Memoirs of the American Mathematical Society, 80 (American Mathematical Society, Providence, RI, 1968)] proved a theorem stating that the exterior powers of an irreducible reflection representation of a Euclidean reflection group are again irreducible and pairwise nonisomorphic. We extend this result to a more general context where the inner product invariant under the group action may not necessarily exist.
We classify all mutation-finite quivers with real weights. We show that every finite mutation class not originating from an integer skew-symmetrisable matrix has a geometric realisation by reflections. We also explore the structure of acyclic representatives in finite mutation classes and their relations to acute-angled simplicial domains in the corresponding reflection groups.
Magnitude is a numerical invariant of compact metric spaces, originally inspired by category theory and now known to be related to myriad other geometric quantities. Generalizing earlier results in $\ell _1^n$ and Euclidean space, we prove an upper bound for the magnitude of a convex body in a hypermetric normed space in terms of its Holmes–Thompson intrinsic volumes. As applications of this bound, we give short new proofs of Mahler’s conjecture in the case of a zonoid and Sudakov’s minoration inequality.
Let $(G,+)$ be a compact, abelian, and metrizable topological group. In this group we take $g\in G$ such that the corresponding automorphism $\tau _g$ is ergodic. The main result of this paper is a new ergodic theorem for functions in $L^1(G,M)$, where M is a Hadamard space. The novelty of our result is that we use inductive means to average the elements of the orbit $\{\tau _g^n(h)\}_{n\in \mathbb {N}}$. The advantage of inductive means is that they can be explicitly computed in many important examples. The proof of the ergodic theorem is done firstly for continuous functions, and then it is extended to $L^1$ functions. The extension is based on a new construction of mollifiers in Hadamard spaces. This construction has the advantage that it only uses the metric structure and the existence of barycenters, and does not require the existence of an underlying vector space. For this reason, it can be used in any Hadamard space, in contrast to those results that need to use the tangent space or some chart to define the mollifier.
In this article, we establish an explicit correspondence between kissing reflection groups and critically fixed anti-rational maps. The correspondence, which is expressed using simple planar graphs, has several dynamical consequences. As an application of this correspondence, we give complete answers to geometric mating problems for critically fixed anti-rational maps.
We shall prove a convergence result relative to sequences of Minkowski symmetrals of general compact sets. In particular, we investigate the case when this process is induced by sequences of subspaces whose elements belong to a finite family, following the path marked by Klain in Klain (2012, Advances in Applied Mathematics 48, 340–353), and the generalizations in Bianchi et al. (2019, Convergence of symmetrization processes, preprint) and Bianchi et al. (2012, Indiana University Mathematics Journal 61, 1695–1710). We prove an analogous result for fiber symmetrization of a specific class of compact sets. The idempotency for symmetrizations of this family of sets is investigated, leading to a simple generalization of a result from Klartag (2004, Geometric and Functional Analysis 14, 1322–1338) regarding the approximation of a ball through a finite number of symmetrizations, and generalizing an approximation result in Fradelizi, Làngi and Zvavitch (2020, Volume of the Minkowski sums of star-shaped sets, preprint).
We prove a necessary and sufficient condition for the graded algebra of automorphic forms on a symmetric domain of type IV being free. From the necessary condition, we derive a classification result. Let $M$ be an even lattice of signature $(2,n)$ splitting two hyperbolic planes. Suppose $\Gamma$ is a subgroup of the integral orthogonal group of $M$ containing the discriminant kernel. It is proved that there are exactly 26 groups $\Gamma$ such that the space of modular forms for $\Gamma$ is a free algebra. Using the sufficient condition, we recover some well-known results.
We present an example of an isometric subspace of a metric space that has a greater metric dimension. We also show that the metric spaces of vector groups over the integers, defined by the generating set of unit vectors, cannot be resolved by a finite set. Bisectors in the spaces of vector groups, defined by the generating set consisting of unit vectors, are completely determined.
We say that a finite metric space $X$ can be embedded almost isometrically into a class of metric spaces $C$ if for every $\unicode[STIX]{x1D716}>0$ there exists an embedding of $X$ into one of the elements of $C$ with the bi-Lipschitz distortion less than $1+\unicode[STIX]{x1D716}$. We show that almost isometric embeddability conditions are equal for the following classes of spaces.
(a) Quotients of Euclidean spaces by isometric actions of finite groups.
(b)$L_{2}$-Wasserstein spaces over Euclidean spaces.
(c) Compact flat manifolds.
(d) Compact flat orbifolds.
(e) Quotients of connected compact bi-invariant Lie groups by isometric actions of compact Lie groups. (This one is the most surprising.)
We call spaces which satisfy these conditions finite flat spaces. Since Markov-type constants depend only on finite subsets, we can conclude that connected compact bi-invariant Lie groups and their quotients have Markov type 2 with constant 1.
We investigate a dichotomy property for Hardy–Littlewood maximal operators, noncentred $M$ and centred $M^{c}$, that was noticed by Bennett et al. [‘Weak-$L^{\infty }$ and BMO’, Ann. of Math. (2)113 (1981), 601–611]. We illustrate the full spectrum of possible cases related to the occurrence or not of this property for $M$ and $M^{c}$ in the context of nondoubling metric measure spaces $(X,\unicode[STIX]{x1D70C},\unicode[STIX]{x1D707})$. In addition, if $X=\mathbb{R}^{d}$, $d\geq 1$, and $\unicode[STIX]{x1D70C}$ is the metric induced by an arbitrary norm on $\mathbb{R}^{d}$, then we give the exact characterisation (in terms of $\unicode[STIX]{x1D707}$) of situations in which $M^{c}$ possesses the dichotomy property provided that $\unicode[STIX]{x1D707}$ satisfies some very mild assumptions.
We introduce properties of metric spaces and, specifically, finitelygenerated groups with word metrics, which we call coarsecoherence and coarse regular coherence. They aregeometric counterparts of the classical algebraic notion of coherence andthe regular coherence property of groups defined and studied by Waldhausen.The new properties can be defined in the general context of coarse metricgeometry and are coarse invariants. In particular, they are quasi-isometryinvariants of spaces and groups. The new framework allows us to provestructural results by developing permanence properties, including theparticularly important fibering permanence property, for coarse regularcoherence.
In this paper, we investigate the set of accumulation points of normalized roots of infinite Coxeter groups for certain class of their action. Concretely, we prove the conjecture proposed in [6, Section 3.2] in the case where the equipped Coxeter matrices are of type $(n-1,1)$, where $n$ is the rank. Moreover, we obtain that the set of such accumulation points coincides with the closure of the orbit of one point of normalized limit roots. In addition, in order to prove our main results, we also investigate some properties on fixed points of the action.
For every rotation $\unicode[STIX]{x1D70C}$ of the Euclidean space $\mathbb{R}^{n}$ ($n\geq 3$), we find an upper bound for the number $r$ such that $\unicode[STIX]{x1D70C}$ is a product of $r$ rotations by an angle $\unicode[STIX]{x1D6FC}$ ($0<\unicode[STIX]{x1D6FC}\leq \unicode[STIX]{x1D70B}$). We also find an upper bound for the number $r$ such that $\unicode[STIX]{x1D70C}$ can be written as a product of $r$ full rotations by an angle $\unicode[STIX]{x1D6FC}$.
We prove that there is a set F in the plane so that the distance between any two points of F is at least 1, and for any positive ϵ < 1, and every line segment in the plane of length at least ϵ−1−o(1), there is a point of F within distance ϵ of the segment. This is tight up to the o(1)-term in the exponent, improving earlier estimates of Peres, of Solomon and Weiss, and of Adiceam.