We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A dimer model is a quiver with faces embedded in a surface. We define and investigate notions of consistency for dimer models on general surfaces with boundary which restrict to well-studied consistency conditions in the disk and torus case. We define weak consistency in terms of the associated dimer algebra and show that it is equivalent to the absence of bad configurations on the strand diagram. In the disk and torus case, weakly consistent models are nondegenerate, meaning that every arrow is contained in a perfect matching; this is not true for general surfaces. Strong consistency is defined to require weak consistency as well as nondegeneracy. We prove that the completed as well as the noncompleted dimer algebra of a strongly consistent dimer model are bimodule internally 3-Calabi-Yau with respect to their boundary idempotents. As a consequence, the Gorenstein-projective module category of the completed boundary algebra of suitable dimer models categorifies the cluster algebra given by their underlying quiver. We provide additional consequences of weak and strong consistency, including that one may reduce a strongly consistent dimer model by removing digons and that consistency behaves well under taking dimer submodels.
We describe the modulo $2$ de Rham-Witt complex of a field of characteristic $2$, in terms of the powers of the augmentation ideal of the $\mathbb {Z}/2$-geometric fixed points of real topological restriction homology ${\mathrm {TRR}}$. This is analogous to the conjecture of Milnor, proved in [Kat82] for fields of characteristic $2$, which describes the modulo $2$ Milnor K-theory in terms of the powers of the augmentation ideal of the Witt group of symmetric forms. Our proof provides a somewhat explicit description of these objects, as well as a calculation of the homotopy groups of the geometric fixed points of ${\mathrm {TRR}}$ and of real topological cyclic homology, for all fields.
We define a local homomorphism $(Q,k)\to (R,\ell )$ to be Koszul if its derived fiber $R\otimes ^{\mathsf {L}}_Q k$ is formal, and if $\operatorname {Tor}^{Q}(R,k)$ is Koszul in the classical sense. This recovers the classical definition when Q is a field, and more generally includes all flat deformations of Koszul algebras. The non-flat case is significantly more interesting, and there is no need for examples to be quadratic: all complete intersection and all Golod quotients are Koszul homomorphisms. We show that the class of Koszul homomorphisms enjoys excellent homological properties, and we give many more examples, especially various monomial and Gorenstein examples. We then study Koszul homomorphisms from the perspective of $\mathrm {A}_{\infty }$-structures on resolutions. We use this machinery to construct universal free resolutions of R-modules by generalizing a classical construction of Priddy. The resulting (infinite) free resolution of an R-module M is often minimal and can be described by a finite amount of data whenever M and R have finite projective dimension over Q. Our construction simultaneously recovers the resolutions of Shamash and Eisenbud over a complete intersection ring, and the bar resolutions of Iyengar and Burke over a Golod ring, and produces analogous resolutions for various other classes of local rings.
We prove new statistical results about the distribution of the cokernel of a random integral matrix with a concentrated residue. Given a prime p and a positive integer n, consider a random $n \times n$ matrix $X_n$ over the ring $\mathbb{Z}_p$ of p-adic integers whose entries are independent. Previously, Wood showed that as long as each entry of $X_n$ is not too concentrated on a single residue modulo p, regardless of its distribution, the distribution of the cokernel $\mathrm{cok}(X_n)$ of $X_n$, up to isomorphism, weakly converges to the Cohen–Lenstra distribution, as $n \rightarrow \infty$. Here on the contrary, we consider the case when $X_n$ has a concentrated residue $A_n$ so that $X_n = A_n + pB_n$. When $B_n$ is a Haar-random $n \times n$ matrix over $\mathbb{Z}_p$, we explicitly compute the distribution of $\mathrm{cok}(P(X_n))$ for every fixed n and a non-constant monic polynomial $P(t) \in \mathbb{Z}_p[t]$. We deduce our result from an interesting equidistribution result for matrices over $\mathbb{Z}_p[t]/(P(t))$, which we prove by establishing a version of the Weierstrass preparation theorem for the noncommutative ring $\mathrm{M}_n(\mathbb{Z}_p)$ of $n \times n$ matrices over $\mathbb{Z}_p$. We also show through cases the subtlety of the “universality” behavior when $B_n$ is not Haar-random.
Consider a pair of elements f and g in a commutative ring Q. Given a matrix factorization of f and another of g, the tensor product of matrix factorizations, which was first introduced by Knörrer and later generalized by Yoshino, produces a matrix factorization of the sum $f+g$. We will study the tensor product of d-fold matrix factorizations, with a particular emphasis on understanding when the construction has a non-trivial direct sum decomposition. As an application of our results, we construct indecomposable maximal Cohen–Macaulay and Ulrich modules over hypersurface domains of a certain form.
We use deformations and mutations of scattering diagrams to show that a scattering diagram with initial functions $f_1=(1+tx)^\mu $ and $f_2=(1+ty)^\nu $ has a dense region. This answers a question asked by Gross and Pandharipande [‘Quivers, curves, and the tropical vertex’, Port. Math.67(2) (2010), 211–259] which had been proved only for the case $\mu =\nu $.
We compute the class groups of full rank upper cluster algebras in terms of the exchange polynomials. This characterizes the UFDs among these algebras. Our results simultaneously generalize theorems of Garcia Elsener, Lampe, and Smertnig from 2019 and of Cao, Keller, and Qin from 2023. Furthermore, we show that every (upper) cluster algebra is a finite factorization domain.
We show that for a Noetherian ring A that is I-adically complete for an ideal I, if $A/I$ admits a dualizing complex, so does A. This gives an alternative proof of the fact that a Noetherian complete local ring admits a dualizing complex. We discuss several consequences of this result. We also consider a generalization of the notion of dualizing complexes to infinite-dimensional rings and prove the results in this generality. In addition, we give an alternative proof of the fact that every excellent Henselian local ring admits a dualizing complex, using ultrapower.
A classification of multiplication modules over multiplication rings with finitely many minimal primes is obtained. A characterization of multiplication rings with finitely many minimal primes is given via faithful, Noetherian, distributive modules. It is proven that for a multiplication ring with finitely many minimal primes every faithful, Noetherian, distributive module is a faithful multiplication module, and vice versa.
We introduce the notions of quasi-Laurent and Laurent families of simple modules over quiver Hecke algebras of arbitrary symmetrizable types. We prove that such a family plays a similar role of a cluster in quantum cluster algebra theory and exhibits a quantum Laurent positivity phenomenon similar to the basis of the quantum unipotent coordinate ring $\mathcal {A}_q(\mathfrak {n}(w))$, coming from the categorification. Then we show that the families of simple modules categorifying Geiß–Leclerc–Schröer (GLS) clusters are Laurent families by using the Poincaré–Birkhoff–Witt (PBW) decomposition vector of a simple module $X$ and categorical interpretation of (co)degree of $[X]$. As applications of such $\mathbb {Z}\mspace {1mu}$-vectors, we define several skew-symmetric pairings on arbitrary pairs of simple modules, and investigate the relationships among the pairings and $\Lambda$-invariants of $R$-matrices in the quiver Hecke algebra theory.
We prove a criterion for the constancy of the Hilbert–Samuel function for locally Noetherian schemes such that the local rings are excellent at every point. More precisely, we show that the Hilbert–Samuel function is locally constant on such a scheme if and only if the scheme is normally flat along its reduction and the reduction itself is regular. Regularity of the underlying reduced scheme is a significant new property.
Let M be a Puiseux monoid, that is, a monoid consisting of nonnegative rationals (under standard addition). In this paper, we study factorisations in atomic Puiseux monoids through the lens of their associated Betti graphs. The Betti graph of $b \in M$ is the graph whose vertices are the factorisations of b with edges between factorisations that share at least one atom. If the Betti graph associated to b is disconnected, then we call b a Betti element of M. We explicitly compute the set of Betti elements for a large class of Puiseux monoids (the atomisations of certain infinite sequences of rationals). The process of atomisation is quite useful in studying the arithmetic of Puiseux monoids, and it has been actively considered in recent literature. This leads to an argument that for every positive integer n, there exists an atomic Puiseux monoid with exactly n Betti elements.
We introduce a new concept of rank – relative rank associated to a filtered collection of polynomials. When the filtration is trivial, our relative rank coincides with Schmidt rank (also called strength). We also introduce the notion of relative bias. The main result of the paper is a relation between these two quantities over finite fields (as a special case, we obtain a new proof of the results in [21]). This relation allows us to get an accurate estimate for the number of points on an affine variety given by a collection of polynomials which is of high relative rank (Lemma 3.2). The key advantage of relative rank is that it allows one to perform an efficient regularization procedure which is polynomial in the initial number of polynomials (the regularization process with Schmidt rank is far worse than tower exponential). The main result allows us to replace Schmidt rank with relative rank in many key applications in combinatorics, algebraic geometry, and algebra. For example, we prove that any collection of polynomials $\mathcal P=(P_i)_{i=1}^c$ of degrees $\le d$ in a polynomial ring over an algebraically closed field of characteristic $>d$ is contained in an ideal $\mathcal I({\mathcal Q})$, generated by a collection ${\mathcal Q}$ of polynomials of degrees $\le d$ which form a regular sequence, and ${\mathcal Q}$ is of size $\le A c^{A}$, where $A=A(d)$ is independent of the number of variables.
It is well known that the edge ideal $I(G)$ of a simple graph G has linear quotients if and only if $G^c$ is chordal. We investigate when the property of having linear quotients is inherited by homological shift ideals of an edge ideal. We will see that adding a cluster to the graph $G^c$ when $I(G)$ has homological linear quotients results in a graph with the same property. In particular, $I(G)$ has homological linear quotients when $G^c$ is a block graph. We also show that adding pinnacles to trees preserves the property of having homological linear quotients for the edge ideal of their complements. Furthermore, $I(G)$ has homological linear quotients for every graph G such that $G^c$ is a $\lambda $-minimal chordal graph.
We extend the notion of y-variables (coefficients) in cluster algebras to cluster scattering diagrams (CSDs). Accordingly, we extend the dilogarithm identity associated with a period in a cluster pattern to the one associated with a loop in a CSD. We show that these identities are constructed from and reduced to trivial ones by applying the pentagon identity possibly infinitely many times.
Consider a reductive linear algebraic group G acting linearly on a polynomial ring S over an infinite field; key examples are the general linear group, the symplectic group, the orthogonal group, and the special linear group, with the classical representations as in Weyl’s book: For the general linear group, consider a direct sum of copies of the standard representation and copies of the dual; in the other cases, take copies of the standard representation. The invariant rings in the respective cases are determinantal rings, rings defined by Pfaffians of alternating matrices, symmetric determinantal rings and the Plücker coordinate rings of Grassmannians; these are the classical invariant rings of the title, with $S^G\subseteq S$ being the natural embedding.
Over a field of characteristic zero, a reductive group is linearly reductive, and it follows that the invariant ring $S^G$ is a pure subring of S, equivalently, $S^G$ is a direct summand of S as an $S^G$-module. Over fields of positive characteristic, reductive groups are typically no longer linearly reductive. We determine, in the positive characteristic case, precisely when the inclusion $S^G\subseteq S$ is pure. It turns out that if $S^G\subseteq S$ is pure, then either the invariant ring $S^G$ is regular or the group G is linearly reductive.
We produce a large class of generalized cluster structures on the Drinfeld double of
$\operatorname {\mathrm {GL}}_n$
that are compatible with Poisson brackets given by Belavin–Drinfeld classification. The resulting construction is compatible with the previous results on cluster structures on
$\operatorname {\mathrm {GL}}_n$
.
A simple polytope P is called B-rigid if its combinatorial type is determined by the cohomology ring of the moment-angle manifold $\mathcal {Z}_P$ over P. We show that any tensor product decomposition of this cohomology ring is geometrically realized by a product decomposition of the moment-angle manifold up to equivariant diffeomorphism. As an application, we find that B-rigid polytopes are closed under products, generalizing some recent results in the toric topology literature. Algebraically, our proof establishes that the Koszul homology of a Gorenstein Stanley–Reisner ring admits a nontrivial tensor product decomposition if and only if the underlying simplicial complex decomposes as a join of full subcomplexes.
In earlier work, the author introduced a method for constructing a Frobenius categorification of a cluster algebra with frozen variables by starting from the data of an internally Calabi–Yau algebra, which becomes the endomorphism algebra of a cluster-tilting object in the resulting category. In this paper, we construct appropriate internally Calabi–Yau algebras for cluster algebras with polarized principal coefficients (which differ from those with principal coefficients by the addition of more frozen variables) and obtain Frobenius categorifications in the acyclic case. Via partial stabilization, we then define extriangulated categories, in the sense of Nakaoka and Palu, categorifying acyclic principal coefficient cluster algebras, for which Frobenius categorifications do not exist in general. Many of the intermediate results used to obtain these categorifications remain valid without the acyclicity assumption, as we will indicate, and are interesting in their own right. Most notably, we provide a Frobenius version of Van den Bergh’s result that the Ginzburg dg-algebra of a quiver with potential is bimodule $3$-Calabi–Yau.
We classify all mutation-finite quivers with real weights. We show that every finite mutation class not originating from an integer skew-symmetrisable matrix has a geometric realisation by reflections. We also explore the structure of acyclic representatives in finite mutation classes and their relations to acute-angled simplicial domains in the corresponding reflection groups.