We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We construct a novel family of difference-permutation operators and prove that they are diagonalized by the wreath Macdonald P-polynomials; the eigenvalues are written in terms of elementary symmetric polynomials of arbitrary degree. Our operators arise from integral formulas for the action of the horizontal Heisenberg subalgebra in the vertex representation of the corresponding quantum toroidal algebra.
A complete description of all possible multiplicative groups of finite skew left braces whose additive group has trivial centre is given. As a consequence, some earlier results of Tsang can be improved and an answer to an open question set by Tsang at Ischia Group Theory 2024 Conference is provided.
We present a construction of left braces of right nilpotency class at most two based on suitable actions of an abelian group on itself with an invariance condition. This construction allows us to recover the construction of a free right nilpotent one-generated left brace of class two.
We develop techniques to construct isomorphisms between simple affine W-algebras and affine vertex algebras at admissible levels. We then apply these techniques to obtain many new, and conjecturally all, admissible collapsing levels for affine W-algebras. In short, if a simple affine W-algebra at a given level is equal to its affine vertex subalgebra generated by the centraliser of an ${\mathfrak {sl}}_2$-triple associated with the underlying nilpotent orbit, then that level is said to be collapsing. Collapsing levels are important both in representation theory and in theoretical physics. Our approach relies on two fundamental invariants of vertex algebras. The first one is the associated variety, which, in the context of admissible level simple affine W-algebras, leads to the Poisson varieties known as nilpotent Slodowy slices. We exploit the singularities of these varieties to detect possible collapsing levels. The second invariant is the asymptotic datum. We prove a general result asserting that, under appropriate hypotheses, equality of asymptotic data implies isomorphism at the level of vertex algebras. Then we use this to give a sufficient criterion, of combinatorial nature, for an admissible level to be collapsing. Our methods also allow us to study isomorphisms between quotients of W-algebras and extensions of simple affine vertex algebras at admissible levels. Based on such examples, we are led to formulate a general conjecture: for any finite extension of vertex algebras, the induced morphism between associated Poisson varieties is dominant.
We introduce the notions of quasi-Laurent and Laurent families of simple modules over quiver Hecke algebras of arbitrary symmetrizable types. We prove that such a family plays a similar role of a cluster in quantum cluster algebra theory and exhibits a quantum Laurent positivity phenomenon similar to the basis of the quantum unipotent coordinate ring $\mathcal {A}_q(\mathfrak {n}(w))$, coming from the categorification. Then we show that the families of simple modules categorifying Geiß–Leclerc–Schröer (GLS) clusters are Laurent families by using the Poincaré–Birkhoff–Witt (PBW) decomposition vector of a simple module $X$ and categorical interpretation of (co)degree of $[X]$. As applications of such $\mathbb {Z}\mspace {1mu}$-vectors, we define several skew-symmetric pairings on arbitrary pairs of simple modules, and investigate the relationships among the pairings and $\Lambda$-invariants of $R$-matrices in the quiver Hecke algebra theory.
The loop space of a string manifold supports an infinite-dimensional Fock space bundle, which is an analog of the spinor bundle on a spin manifold. This spinor bundle on loop space appears in the description of two-dimensional sigma models as the bundle of states over the configuration space of the superstring. We construct a product on this bundle that covers the fusion of loops, i.e. the merging of two loops along a common segment. For this purpose, we exhibit it as a bundle of bimodules over a certain von Neumann algebra bundle, and realize our product fibrewise using the Connes fusion of von Neumann bimodules. Our main technique is to establish novel relations between string structures, loop fusion, and the Connes fusion of Fock spaces. The fusion product on the spinor bundle on loop space was proposed by Stolz and Teichner as part of a programme to explore the relation between generalized cohomology theories, functorial field theories, and index theory. It is related to the pair of pants worldsheet of the superstring, to the extension of the corresponding smooth functorial field theory down to the point, and to a higher-categorical bundle on the underlying string manifold, the stringor bundle.
Let $\mathfrak {g}$ be a complex semisimple Lie algebra with associated Yangian $Y_{\hbar }\mathfrak {g}$. In the mid-1990s, Khoroshkin and Tolstoy formulated a conjecture which asserts that the algebra $\mathrm {D}Y_{\hbar }\mathfrak {g}$ obtained by doubling the generators of $Y_{\hbar }\mathfrak {g}$, called the Yangian double, provides a realization of the quantum double of the Yangian. We provide a uniform proof of this conjecture over $\mathbb {C}[\kern-1.2pt\![{\hbar }]\!\kern-1.2pt]$ which is compatible with the theory of quantized enveloping algebras. As a by-product, we identify the universal R-matrix of the Yangian with the canonical element defined by the pairing between the Yangian and its restricted dual.
A semiclassical analysis based on spin-coherent states is used to establish a classification and novel simple formulae for the spectral gap of mean-field spin Hamiltonians. For gapped systems, we provide a full description of the low-energy spectra based on a second-order approximation to the semiclassical Hamiltonian, hence justifying fluctuation theory at zero temperature for this case. We also point out a shift caused by the spherical geometry in these second-order approximations.
Let G be a compact quantum group. We show that given a G-equivariant $\textrm {C}^*$-correspondence E, the Pimsner algebra $\mathcal {O}_E$ can be naturally made into a G-$\textrm {C}^*$-algebra. We also provide sufficient conditions under which it is guaranteed that a G-action on the Pimsner algebra $\mathcal {O}_E$ arises in this way, in a suitable precise sense. When G is of Kac type, a KMS state on the Pimsner algebra, arising from a quasi-free dynamics, is G-equivariant if and only if the tracial state obtained from restricting it to the coefficient algebra is G-equivariant, under a natural condition. We apply these results to the situation when the $\textrm {C}^*$-correspondence is obtained from a finite, directed graph and draw various conclusions on the quantum automorphism groups of such graphs, both in the sense of Banica and Bichon.
We study the spaces of twisted conformal blocks attached to a $\Gamma$-curve $\Sigma$ with marked $\Gamma$-orbits and an action of $\Gamma$ on a simple Lie algebra $\mathfrak {g}$, where $\Gamma$ is a finite group. We prove that if $\Gamma$ stabilizes a Borel subalgebra of $\mathfrak {g}$, then the propagation theorem and factorization theorem hold. We endow a flat projective connection on the sheaf of twisted conformal blocks attached to a smooth family of pointed $\Gamma$-curves; in particular, it is locally free. We also prove that the sheaf of twisted conformal blocks on the stable compactification of Hurwitz stack is locally free. Let $\mathscr {G}$ be the parahoric Bruhat–Tits group scheme on the quotient curve $\Sigma /\Gamma$ obtained via the $\Gamma$-invariance of Weil restriction associated to $\Sigma$ and the simply connected simple algebraic group $G$ with Lie algebra $\mathfrak {g}$. We prove that the space of twisted conformal blocks can be identified with the space of generalized theta functions on the moduli stack of quasi-parabolic $\mathscr {G}$-torsors on $\Sigma /\Gamma$ when the level $c$ is divisible by $|\Gamma |$ (establishing a conjecture due to Pappas and Rapoport).
We establish an equivalence between two approaches to quantization of irreducible symmetric spaces of compact type within the framework of quasi-coactions, one based on the Enriquez–Etingof cyclotomic Knizhnik–Zamolodchikov (KZ) equations and the other on the Letzter–Kolb coideals. This equivalence can be upgraded to that of ribbon braided quasi-coactions, and then the associated reflection operators (K-matrices) become a tangible invariant of the quantization. As an application we obtain a Kohno–Drinfeld type theorem on type $\mathrm {B}$ braid group representations defined by the monodromy of KZ-equations and by the Balagović–Kolb universal K-matrices. The cases of Hermitian and non-Hermitian symmetric spaces are significantly different. In particular, in the latter case a quasi-coaction is essentially unique, while in the former we show that there is a one-parameter family of mutually nonequivalent quasi-coactions.
Skew left braces arise naturally from the study of non-degenerate set-theoretic solutions of the Yang–Baxter equation. To understand the algebraic structure of skew left braces, a study of the decomposition into minimal substructures is relevant. We introduce chief series and prove a strengthened form of the Jordan–Hölder theorem for finite skew left braces. A characterization of right nilpotency and an application to multipermutation solutions are also given.
We introduce the combinatorial notion of a q-factorization graph intended as a tool to study and express results related to the classification of prime simple modules for quantum affine algebras. These are directed graphs equipped with three decorations: a coloring and a weight map on vertices, and an exponent map on arrows (the exponent map can be seen as a weight map on arrows). Such graphs do not contain oriented cycles and, hence, the set of arrows induces a partial order on the set of vertices. In this first paper on the topic, beside setting the theoretical base of the concept, we establish several criteria for deciding whether or not a tensor product of two simple modules is a highest-$\ell $-weight module and use such criteria to prove, for type A, that a simple module whose q-factorization graph has a totally ordered vertex set is prime.
Using crossed homomorphisms, we show that the category of weak representations (respectively admissible representations) of Lie–Rinehart algebras (respectively Leibniz pairs) is a left module category over the monoidal category of representations of Lie algebras. In particular, the corresponding bifunctor of monoidal categories is established to give new weak representations (respectively admissible representations) of Lie–Rinehart algebras (respectively Leibniz pairs). This generalises and unifies various existing constructions of representations of many Lie algebras by using this new bifunctor. We construct some crossed homomorphisms in different situations and use our actions of monoidal categories to recover some known constructions of representations of various Lie algebras and to obtain new representations for generalised Witt algebras and their Lie subalgebras. The cohomology theory of crossed homomorphisms between Lie algebras is introduced and used to study linear deformations of crossed homomorphisms.
We consider symmetry-protected topological phases with on-site finite group G symmetry $\beta $ for two-dimensional quantum spin systems. We show that they have $H^{3}(G,{\mathbb T})$-valued invariant.
We prove an explicit inverse Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds of simply laced type. By an ‘inverse Chevalley formula’ we mean a formula for the product of an equivariant scalar with a Schubert class, expressed as a $\mathbb {Z}\left [q^{\pm 1}\right ]$-linear combination of Schubert classes twisted by equivariant line bundles. Our formula applies to arbitrary Schubert classes in semi-infinite flag manifolds of simply laced type and equivariant scalars $e^{\lambda }$, where $\lambda $ is an arbitrary minuscule weight. By a result of Stembridge, our formula completely determines the inverse Chevalley formula for arbitrary weights in simply laced type except for type $E_8$. The combinatorics of our formula is governed by the quantum Bruhat graph, and the proof is based on a limit from the double affine Hecke algebra. Thus our formula also provides an explicit determination of all nonsymmetric q-Toda operators for minuscule weights in ADE type.
Set-theoretic solutions to the Yang–Baxter equation can be classified by their universal coverings and their fundamental groupoids. Extending previous results, universal coverings of irreducible involutive solutions are classified in the degenerate case. These solutions are described in terms of a group with a distinguished self-map. The classification in the nondegenerate case is simplified and compared with the description in the degenerate case.
We introduce an index for symmetry-protected topological (SPT) phases of infinite fermionic chains with an on-site symmetry given by a finite group G. This index takes values in $\mathbb {Z}_2 \times H^1(G,\mathbb {Z}_2) \times H^2(G, U(1)_{\mathfrak {p}})$ with a generalised Wall group law under stacking. We show that this index is an invariant of the classification of SPT phases. When the ground state is translation invariant and has reduced density matrices with uniformly bounded rank on finite intervals, we derive a fermionic matrix product representative of this state with on-site symmetry.
We prove the longstanding physics conjecture that there exists a unique two-parameter ${\mathcal {W}}_{\infty }$-algebra which is freely generated of type ${\mathcal {W}}(2,3,\ldots )$, and generated by the weights $2$ and $3$ fields. Subject to some mild constraints, all vertex algebras of type ${\mathcal {W}}(2,3,\ldots , N)$ for some $N$ can be obtained as quotients of this universal algebra. As an application, we show that for $n\geq 3$, the structure constants for the principal ${\mathcal {W}}$-algebras ${\mathcal {W}}^k({\mathfrak s}{\mathfrak l}_n, f_{\text {prin}})$ are rational functions of $k$ and $n$, and we classify all coincidences among the simple quotients ${\mathcal {W}}_k({\mathfrak s}{\mathfrak l}_n, f_{\text {prin}})$ for $n\geq 2$. We also obtain many new coincidences between ${\mathcal {W}}_k({\mathfrak s}{\mathfrak l}_n, f_{\text {prin}})$ and other vertex algebras of type ${\mathcal {W}}(2,3,\ldots , N)$ which arise as cosets of affine vertex algebras or nonprincipal ${\mathcal {W}}$-algebras.