To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There are presented some generalizations and extensions of results for rings which are sums of two or tree subrings. It is provided a new proof of the well-known Kegel’s result stating that a ring being a sum of two nilpotent subrings is itself nilpotent. Moreover, it is proved that if R is a ring of the form $R=A+B$, where A is a subgroup of the additive group of R satisfying $A^d\subseteq B$ for some positive integer d and B is a subring of R such that $B\in S$, where S is N-radical contained in the class of all locally nilpotent rings, then $R\in S$.
We prove a strong quantitative version of the Kurosh Problem, which has been conjectured by Zelmanov, up to a mild polynomial error factor, thereby extending all previously known growth rates of algebraic algebras. Consequently, we provide the first counterexamples to the Kurosh Problem over any field with known subexponential growth, and the first examples of finitely generated, infinite-dimensional, nil Lie algebras with known subexponential growth over fields of characteristic zero.
We also widen the known spectrum of the Gel’fand–Kirillov dimensions of algebraic algebras, improving the answer of Alahmadi–Alsulami–Jain–Zelmanov to a question of Bell, Smoktunowicz, Small and Young. Finally, we prove improved analogous results for graded-nil algebras.
We present a construction of left braces of right nilpotency class at most two based on suitable actions of an abelian group on itself with an invariance condition. This construction allows us to recover the construction of a free right nilpotent one-generated left brace of class two.
Nilpotency concepts for skew braces are among the main tools with which we are nowadays classifying certain special solutions of the Yang–Baxter equation, a consistency equation that plays a relevant role in quantum statistical mechanics and in many areas of mathematics. In this context, two relevant questions have been raised in F. Cedó, A. Smoktunowicz and L. Vendramin (Skew left braces of nilpotent type. Proc. Lond. Math. Soc. (3) 118 (2019), 1367–1392) (see questions 2.34 and 2.35) concerning right- and central nilpotency. The aim of this short note is to give a negative answer to both questions: thus, we show that a finite strong-nil brace B need not be right-nilpotent. On a positive note, we show that there is one (and only one, by our examples) special case of the previous questions that actually holds. In fact, we show that if B is a skew brace of nilpotent type and $b\ \ast \ b=0$ for all $b\in B$, then B is centrally nilpotent.
Previously [‘Radicals and idempotents I, II’, Comm. Alg.49(1) (2021), 73–84 and 50(11) (2022), 4791–4804], we have studied the interaction between radicals of rings and idempotents in general or those of particular types, for example, left semicentral. Here we carry out similar investigations for q-central idempotents, that is, those idempotents e satisfying the condition $(ea-eae)(be-ebe) = 0$ for all a, b.
Let R be a finite ring and let ${\mathrm {zp}}(R)$ denote the nullity degree of R, that is, the probability that the multiplication of two randomly chosen elements of R is zero. We establish the nullity degree of a semisimple ring and find upper and lower bounds for the nullity degree in the general case.
Let R be a semiprime ring with extended centroid C and let$I(x)$ denote the set of all inner inverses of a regular element x in R. Given two regular elements$a, b$ in R, we characterise the existence of some$c\in R$ such that$I(a)+I(b)=I(c)$. Precisely, if$a, b, a+b$ are regular elements of R and a and b are parallel summable with the parallel sum${\cal P}(a, b)$, then$I(a)+I(b)=I({\cal P}(a, b))$. Conversely, if$I(a)+I(b)=I(c)$ for some$c\in R$, then$\mathrm {E}[c]a(a+b)^{-}b$ is invariant for all$(a+b)^{-}\in I(a+b)$, where$\mathrm {E}[c]$ is the smallest idempotent in C satisfying$c=\mathrm {E}[c]c$. This extends earlier work of Mitra and Odell for matrix rings over a field and Hartwig for prime regular rings with unity and some recent results proved by Alahmadi et al. [‘Invariance and parallel sums’, Bull. Math. Sci.10(1) (2020), 2050001, 8 pages] concerning the parallel summability of unital prime rings and abelian regular rings.
Ryabukhin showed that there is a correspondence between elementary radical classes of rings and certain filters of ideals of the free ring on one generator, analogous to the Gabriel correspondence between torsion classes of left unital modules and certain filters of left ideals of the coefficient ring. This correspondence is further explored here. All possibilities for the intersection of the ideals in a filter are catalogued, and the connections between filters and other ways of describing elementary radical classes are investigated. Some generalisations to nonassociative rings and groups are also presented.
Bosonizations of quantum linear spaces are a large class of pointed Hopf algebras that include the Taft algebras and their generalizations. We give conditions for the smash product of an associative algebra with a bosonization of a quantum linear space to be (semi)prime. These are then used to determine (semi)primeness of certain smash products with quantum affine spaces. This extends Bergen’s work on Taft algebras.
We show that Ringrose's diagonal ideals are primitive ideals in a nest algebra (subject to the continuum hypothesis). This answers an old question of Lance and provides for the first time concrete descriptions of enough primitive ideals to obtain the Jacobson radical as their intersection. Separately, we provide a standard form for all left ideals of a nest algebra, which leads to insights into the maximal left ideals. In the case of atomic nest algebras, we show how primitive ideals can be categorized by their behaviour on the diagonal and provide concrete examples of all types.
Let R be a semiprime ring with the extended centroid C and Q the maximal right ring of quotients of R. Set [y, x]1 = [y, x] = yx − xy for x, y ∈ Q and inductively [y, x]k = [[y, x]k−1, x] for k > 1. Suppose that f : R → Q is an additive map satisfying [f(x), x]n = 0 for all x ∈ R, where n is a fixed positive integer. Then it can be shown that there exist λ ∈ C and an additive map μ : R → C such that f(x) = λx + μ(x) for all x ∈ R. This gives the affirmative answer to the unsolved problem of such functional identities initiated by Brešar in 1996.
In this paper, we study some connections between the polynomial ring $R[y]$ and the differential polynomial ring $R[x;D]$. In particular, we answer a question posed by Smoktunowicz, which asks whether $R[y]$ is nil when $R[x;D]$ is nil, provided that $R$ is an algebra over a field of positive characteristic and $D$ is a locally nilpotent derivation.
A ring is called right annelidan if the right annihilator of any subset of the ring is comparable with every other right ideal. In this paper we develop the connections between this class of rings and the classes of right Bézout rings and rings whose right ideals form a distributive lattice. We obtain results on localization of right annelidan rings at prime ideals, chain conditions that entail left-right symmetry of the annelidan condition, and construction of completely prime ideals.
We prove two approximations of the open problem of whether the adjoint group of a non-nilpotent nil ring can be finitely generated. We show that the adjoint group of a non-nilpotent Jacobson radical cannot be boundedly generated and, on the other hand, construct a finitely generated, infinite-dimensional nil algebra whose adjoint group is generated by elements of bounded torsion.
In this paper, class operators are used to give a complete listing of distinct base radical and semisimple classes for universal classes of finite associative rings. General relations between operators reveal that the maximum order of the semigroup formed is 46. In this setting, the homomorphically closed semisimple classes are precisely the hereditary radical classes and hence radical–semisimple classes, and the largest homomorphically closed subclass of a semisimple class is a radical–semisimple class.
We determine sufficient criteria for the prime spectrum of an ambiskew polynomial algebra R over an algebraically closed field 𝕂 to be akin to those of two of the principal examples of such an algebra, namely the universal enveloping algebra U(sl2) (in characteristic 0) and its quantization Uq(sl2) (when q is not a root of unity). More precisely, we determine sufficient criteria for the prime spectrum of R to consist of 0, the ideals (z − λ)R for some central element z of R and all λ ∈ 𝕂, and, for some positive integer d and each positive integer m, d height two prime ideals P for which R/P has Goldie rank m.
We prove that an integral Jacobson radical ring is always nil, which extends a well-known result from algebras over fields to rings. As a consequence we show that if every element x of a ring R is a zero of some polynomial px with integer coefficients, such that px(1) = 1, then R is a nil ring. With these results we are able to give new characterizations of the upper nilradical of a ring and a new class of rings that satisfy the Köthe conjecture: namely, the integral rings.
A special atom (respectively, supernilpotent atom) is a minimal element of the lattice $\mathbb{S}$ of all special radicals (respectively, a minimal element of the lattice $\mathbb{K}$ of all supernilpotent radicals). A semiprime ring $R$ is called prime essential if every nonzero prime ideal of $R$ has a nonzero intersection with each nonzero two-sided ideal of $R$. We construct a prime essential ring $R$ such that the smallest supernilpotent radical containing $R$ is not a supernilpotent atom but where the smallest special radical containing $R$ is a special atom. This answers a question put by Puczylowski and Roszkowska.
For two modules M and N, iM(N) stands for the largest submodule of N relative to which M is injective. For any module M, iM: Mod-R → Mod-R thus defines a left exact preradical, and iM(M) is quasi-injective. Classes of ring including strongly prime, semi-Artinian rings and those with no middle class are characterized using this functor: a ring R is semi-simple or right strongly prime if and only if for any right R-module M, iM(R) = R or 0, extending a result of Rubin; R is a right QI-ring if and only if R has the ascending chain condition (a.c.c.) on essential right ideals and iM is a radical for each M ∈ Mod-R (the a.c.c. is not redundant), extending a partial answer of Dauns and Zhou to a long-standing open problem. Also discussed are rings close to those with no middle class.