To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper is a continuation of a project to determine which skew polynomial algebras $S = R[\theta; \alpha]$ satisfy property $(\diamond)$, namely that the injective hull of every simple S-module is locally Artinian, where k is a field, R is a commutative Noetherian k-algebra and α is a k-algebra automorphism of R. Earlier work (which we review) and further analysis done here lead us to focus on the case where S is a primitive domain and R has Krull dimension 1 and contains an uncountable field. Then we show first that if $|\mathrm{Spec}(R)|$ is infinite then S does not satisfy $(\diamond)$. Secondly, we show that when $R = k[X]_{ \lt X \gt }$ and $\alpha (X) = qX$ where $q \in k \setminus \{0\}$ is not a root of unity then S does not satisfy $(\diamond)$. This is in complete contrast to our earlier result that, when $R = k[[X]]$ and α is an arbitrary k-algebra automorphism of infinite order, S satisfies $(\diamond)$. A number of open questions are stated.
In this paper, we show that for a large natural class of vertex operator algebras (VOAs) and their modules, the Zhu’s algebras and bimodules (and their g-twisted analogs) are Noetherian. These carry important information about the representation theory of the VOA, and its fusion rules, and the Noetherian property gives the potential for (non-commutative) algebro-geometric methods to be employed in their study.
We prove that the Drinfeld center of a fusion 2-category is invariant under Morita equivalence. We go on to show that the concept of Morita equivalence between connected fusion 2-categories corresponds to a notion of Witt equivalence between braided fusion 1-categories. A strongly fusion 2-category is a fusion 2-category whose braided fusion 1-category of endomorphisms of the monoidal unit is $\mathbf{Vect}$ or $\mathbf{SVect}$. We prove that every fusion 2-category is Morita equivalent to the 2-Deligne tensor product of a strongly fusion 2-category and an invertible fusion 2-category. We proceed to show that every fusion 2-category is Morita equivalent to a connected fusion 2-category. As a consequence, we find that every rigid algebra in a fusion 2-category is separable. This implies in particular that every fusion 2-category is separable. Conjecturally, separability ensures that a fusion 2-category is 4-dualizable. We define the dimension of a fusion 2-category, and prove that it is always non-zero. Finally, we show that the Drinfeld center of any fusion 2-category is a finite semisimple 2-category.
In this paper, we investigate locally finitely presented pure semisimple (hereditary) Grothendieck categories. We show that every locally finitely presented pure semisimple (resp., hereditary) Grothendieck category $\mathscr {A}$ is equivalent to the category of left modules over a left pure semisimple (resp., left hereditary) ring when $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ is a QF-3 category, and every representable functor in $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ has finitely generated essential socle. In fact, we show that there exists a bijection between Morita equivalence classes of left pure semisimple (resp., left hereditary) rings $\Lambda $ and equivalence classes of locally finitely presented pure semisimple (resp., hereditary) Grothendieck categories $\mathscr {A}$ that $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ is a QF-3 category, and every representable functor in $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ has finitely generated essential socle. To prove this result, we study left pure semisimple rings by using Auslander’s ideas. We show that there exists, up to equivalence, a bijection between the class of left pure semisimple rings and the class of rings with nice homological properties. These results extend the Auslander and Ringel–Tachikawa correspondence to the class of left pure semisimple rings. As a consequence, we give several equivalent statements to the pure semisimplicity conjecture.
We study Morita equivalence for idempotent rings with involution. Following the ideas of Rieffel, we define Rieffel contexts, and we also introduce Morita $*$-contexts and enlargements for rings with involution. We prove that two idempotent rings with involution have a joint enlargement if and only if they are connected by a unitary and full Rieffel context. These conditions are also equivalent to having a unitary and surjective Morita $*$-context between those rings. We also examine how the mentioned conditions are connected to the existence of certain equivalence functors between the categories of firm modules over the given rings with involution.
We introduce the notions of quasi-Laurent and Laurent families of simple modules over quiver Hecke algebras of arbitrary symmetrizable types. We prove that such a family plays a similar role of a cluster in quantum cluster algebra theory and exhibits a quantum Laurent positivity phenomenon similar to the basis of the quantum unipotent coordinate ring $\mathcal {A}_q(\mathfrak {n}(w))$, coming from the categorification. Then we show that the families of simple modules categorifying Geiß–Leclerc–Schröer (GLS) clusters are Laurent families by using the Poincaré–Birkhoff–Witt (PBW) decomposition vector of a simple module $X$ and categorical interpretation of (co)degree of $[X]$. As applications of such $\mathbb {Z}\mspace {1mu}$-vectors, we define several skew-symmetric pairings on arbitrary pairs of simple modules, and investigate the relationships among the pairings and $\Lambda$-invariants of $R$-matrices in the quiver Hecke algebra theory.
For an action of a finite group on a finite EI quiver, we construct its ‘orbifold’ quotient EI quiver. The free EI category associated to the quotient EI quiver is equivalent to the skew group category with respect to the given group action. Specializing the result to a finite group action on a finite acyclic quiver, we prove that, under reasonable conditions, the skew group category of the path category is equivalent to a finite EI category of Cartan type. If the ground field is of characteristic $p$ and the acting group is a cyclic $p$-group, we prove that the skew group algebra of the path algebra is Morita equivalent to the algebra associated to a Cartan matrix, defined in [C. Geiss, B. Leclerc, and J. Schröer, Quivers with relations for symmetrizable Cartan matrices I: Foundations, Invent. Math. 209 (2017), 61–158]. We apply the Morita equivalence to construct a categorification of the folding projection between the root lattices with respect to a graph automorphism. In the Dynkin cases, the restriction of the categorification to indecomposable modules corresponds to the folding of positive roots.
If E is a graph and K is a field, we consider an ideal I of the Leavitt path algebra $L_K(E)$ of E over K. We describe the admissible pair corresponding to the smallest graded ideal which contains I where the grading in question is the natural grading of $L_K(E)$ by ${\mathbb {Z}}$. Using this description, we show that the right and the left annihilators of I are equal (which may be somewhat surprising given that I may not be self-adjoint). In particular, we establish that both annihilators correspond to the same admissible pair and its description produces the characterisation from the title. Then, we turn to the property that the right (equivalently left) annihilator of any ideal is a direct summand and recall that a unital ring with this property is said to be quasi-Baer. We exhibit a condition on E which is equivalent to unital $L_K(E)$ having this property.
The algebraic K-theory of Lawvere theories is a conceptual device to elucidate the stable homology of the symmetry groups of algebraic structures such as the permutation groups and the automorphism groups of free groups. In this paper, we fully address the question of how Morita equivalence classes of Lawvere theories interact with algebraic K-theory. On the one hand, we show that the higher algebraic K-theory is invariant under passage to matrix theories. On the other hand, we show that the higher algebraic K-theory is not fully Morita invariant because of the behavior of idempotents in non-additive contexts: We compute the K-theory of all Lawvere theories Morita equivalent to the theory of Boolean algebras.
Motivated by a new conjecture on the behavior of bricks, we start a systematic study of minimal $\tau $-tilting infinite (min-$\tau $-infinite, for short) algebras. In particular, we treat min-$\tau $-infinite algebras as a modern counterpart of minimal representation-infinite algebras and show some of the fundamental similarities and differences between these families. We then relate our studies to the classical tilting theory and observe that this modern approach can provide fresh impetus to the study of some old problems. We further show that in order to verify the conjecture, it is sufficient to treat those min-$\tau $-infinite algebras where almost all bricks are faithful. Finally, we also prove that minimal extending bricks have open orbits, and consequently obtain a simple proof of the brick analogue of the first Brauer–Thrall conjecture, recently shown by Schroll and Treffinger using some different techniques.
For a Galois extension $K/F$ with $\text {char}(K)\neq 2$ and $\mathrm {Gal}(K/F) \simeq \mathbb {Z}/2\mathbb {Z}\oplus \mathbb {Z}/2\mathbb {Z}$, we determine the $\mathbb {F}_{2}[\mathrm {Gal}(K/F)]$-module structure of $K^{\times }/K^{\times 2}$. Although there are an infinite number of (pairwise nonisomorphic) indecomposable $\mathbb {F}_{2}[\mathbb {Z}/2\mathbb {Z}\oplus \mathbb {Z}/2\mathbb {Z}]$-modules, our decomposition includes at most nine indecomposable types. This paper marks the first time that the Galois module structure of power classes of a field has been fully determined when the modular representation theory allows for an infinite number of indecomposable types.
We characterize the generalized Auslander–Reiten duality on the category of finitely presented modules over some certain Hom-finite category. Examples include the category FI of finite sets with injections, and the one VI of finite-dimensional vector spaces with linear injections over a finite field.
For a three-dimensional quantum polynomial algebra $A=\mathcal {A}(E,\sigma )$, Artin, Tate, and Van den Bergh showed that A is finite over its center if and only if $|\sigma |<\infty $. Moreover, Artin showed that if A is finite over its center and $E\neq \mathbb P^{2}$, then A has a fat point module, which plays an important role in noncommutative algebraic geometry; however, the converse is not true in general. In this paper, we will show that if $E\neq \mathbb P^{2}$, then A has a fat point module if and only if the quantum projective plane ${\sf Proj}_{\text {nc}} A$ is finite over its center in the sense of this paper if and only if $|\nu ^{*}\sigma ^{3}|<\infty $ where $\nu $ is the Nakayama automorphism of A. In particular, we will show that if the second Hessian of E is zero, then A has no fat point module.
Let $U_q'({\mathfrak {g}})$ be a quantum affine algebra with an indeterminate $q$, and let $\mathscr {C}_{\mathfrak {g}}$ be the category of finite-dimensional integrable $U_q'({\mathfrak {g}})$-modules. We write $\mathscr {C}_{\mathfrak {g}}^0$ for the monoidal subcategory of $\mathscr {C}_{\mathfrak {g}}$ introduced by Hernandez and Leclerc. In this paper, we associate a simply laced finite-type root system to each quantum affine algebra $U_q'({\mathfrak {g}})$ in a natural way and show that the block decompositions of $\mathscr {C}_{\mathfrak {g}}$ and $\mathscr {C}_{\mathfrak {g}}^0$ are parameterized by the lattices associated with the root system. We first define a certain abelian group $\mathcal {W}$ (respectively $\mathcal {W} _0$) arising from simple modules of $\mathscr {C}_{\mathfrak {g}}$ (respectively $\mathscr {C}_{\mathfrak {g}}^0$) by using the invariant $\Lambda ^\infty$ introduced in previous work by the authors. The groups $\mathcal {W}$ and $\mathcal {W} _0$ have subsets $\Delta$ and $\Delta _0$ determined by the fundamental representations in $\mathscr {C}_{\mathfrak {g}}$ and $\mathscr {C}_{\mathfrak {g}}^0$, respectively. We prove that the pair $( \mathbb {R} \otimes _\mathbb {\mspace {1mu}Z\mspace {1mu}} \mathcal {W} _0, \Delta _0)$ is an irreducible simply laced root system of finite type and that the pair $( \mathbb {R} \otimes _\mathbb {\mspace {1mu}Z\mspace {1mu}} \mathcal {W} , \Delta )$ is isomorphic to the direct sum of infinite copies of $( \mathbb {R} \otimes _\mathbb {\mspace {1mu}Z\mspace {1mu}} \mathcal {W} _0, \Delta _0)$ as a root system.
Fisher [10] and Baur [6] showed independently in the seventies that if T is a complete first-order theory extending the theory of modules, then the class of models of T with pure embeddings is stable. In [25, 2.12], it is asked if the same is true for any abstract elementary class $(K, \leq _p)$ such that K is a class of modules and $\leq _p$ is the pure submodule relation. In this paper we give some instances where this is true:Theorem.
Assume R is an associative ring with unity. Let $(K, \leq _p)$ be an AEC such that $K \subseteq R\text {-Mod}$
and K is closed under finite direct sums, then:
• If K is closed under pure-injective envelopes, then $\mathbf {K}$ is $\lambda $-stable for every $\lambda \geq \operatorname {LS}(\mathbf {K})$ such that $\lambda ^{|R| + \aleph _0}= \lambda $.
• If K is closed under pure submodules and pure epimorphic images, then $\mathbf {K}$ is $\lambda $-stable for every $\lambda $ such that $\lambda ^{|R| + \aleph _0}= \lambda $.
• Assume R is Von Neumann regular. If $\mathbf {K}$ is closed under submodules and has arbitrarily large models, then $\mathbf {K}$ is $\lambda $-stable for every $\lambda $ such that $\lambda ^{|R| + \aleph _0}= \lambda $.
As an application of these results we give new characterizations of noetherian rings, pure-semisimple rings, Dedekind domains, and fields via superstability. Moreover, we show how these results can be used to show a link between being good in the stability hierarchy and being good in the axiomatizability hierarchy.
Another application is the existence of universal models with respect to pure embeddings in several classes of modules. Among them, the class of flat modules and the class of $\mathfrak {s}$-torsion modules.
We show that every graded ideal of a Leavitt path algebra is graded isomorphic to a Leavitt path algebra. It is known that a graded ideal I of a Leavitt path algebra is isomorphic to the Leavitt path algebra of a graph, known as the generalised hedgehog graph, which is defined based on certain sets of vertices uniquely determined by I. However, this isomorphism may not be graded. We show that replacing the short ‘spines’ of the generalised hedgehog graph with possibly fewer, but then necessarily longer spines, we obtain a graph (which we call the porcupine graph) whose Leavitt path algebra is graded isomorphic to I. Our proof can be adapted to show that, for every closed gauge-invariant ideal J of a graph $C^*$-algebra, there is a gauge-invariant $*$-isomorphism mapping the graph $C^*$-algebra of the porcupine graph of J onto $J.$
In noncommutative algebraic geometry an Artin–Schelter regular (AS-regular) algebra is one of the main interests, and every three-dimensional quadratic AS-regular algebra is a geometric algebra, introduced by Mori, whose point scheme is either $\mathbb {P}^{2}$ or a cubic curve in $\mathbb {P}^{2}$ by Artin et al. [‘Some algebras associated to automorphisms of elliptic curves’, in: The Grothendieck Festschrift, Vol. 1, Progress in Mathematics, 86 (Birkhäuser, Basel, 1990), 33–85]. In the preceding paper by the authors Itaba and Matsuno [‘Defining relations of 3-dimensional quadratic AS-regular algebras’, Math. J. Okayama Univ. 63 (2021), 61–86], we determined all possible defining relations for these geometric algebras. However, we did not check their AS-regularity. In this paper, by using twisted superpotentials and twists of superpotentials in the Mori–Smith sense, we check the AS-regularity of geometric algebras whose point schemes are not elliptic curves. For geometric algebras whose point schemes are elliptic curves, we give a simple condition for three-dimensional quadratic AS-regular algebras. As an application, we show that every three-dimensional quadratic AS-regular algebra is graded Morita equivalent to a Calabi–Yau AS-regular algebra.
Let K be a field of arbitrary characteristic, $${\cal A}$$ be a commutative K-algebra which is a domain of essentially finite type (e.g., the algebra of functions on an irreducible affine algebraic variety), $${a_r}$$ be its Jacobian ideal, and $${\cal D}\left( {\cal A} \right)$$ be the algebra of differential operators on the algebra $${\cal A}$$. The aim of the paper is to give a simplicity criterion for the algebra $${\cal D}\left( {\cal A} \right)$$: the algebra$${\cal D}\left( {\cal A} \right)$$is simple iff$${\cal D}\left( {\cal A} \right)a_r^i{\cal D}\left( {\cal A} \right) = {\cal D}\left( {\cal A} \right)$$for all i ≥ 1 provided the field K is a perfect field. Furthermore, a simplicity criterion is given for the algebra $${\cal D}\left( R \right)$$ of differential operators on an arbitrary commutative algebra R over an arbitrary field. This gives an answer to an old question to find a simplicity criterion for algebras of differential operators.
Given a compact Kähler manifold X, it is shown that pairs of the form $(E,\, D)$, where E is a trivial holomorphic vector bundle on X, and D is an integrable holomorphic connection on E, produce a neutral Tannakian category. The corresponding pro-algebraic affine group scheme is studied. In particular, it is shown that this pro-algebraic affine group scheme for a compact Riemann surface determines uniquely the isomorphism class of the Riemann surface.
We prove that there is a natural plectic weight filtration on the cohomology of Hilbert modular varieties in the spirit of Nekovář and Scholl. This is achieved with the help of Morel’s work on weight t-structures and a detailed study of partial Frobenius. We prove in particular that the partial Frobenius extends to toroidal and minimal compactifications.