To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give necessary and sufficient conditions for certain pushouts of topological spaces in the category of Čech’s closure spaces to agree with their pushout in the category of topological spaces. We prove that in these two categories, the constructions of cell complexes by a finite sequence of closed cell attachments, which attach arbitrarily many cells at a time, agree. Likewise, the constructions of CW complexes relative to a compactly generated weak Hausdorff space that attach only finitely many cells, also agree. On the other hand, we give examples showing that the constructions of finite-dimensional CW complexes, CW complexes of finite type, and relative CW complexes that attach only finitely many cells, need not agree.
Building on our previous work on enriched universal algebra, we define a notion of enriched language consisting of function and relation symbols whose arities are objects of the base of enrichment $\mathcal {V}$. In this context, we construct atomic formulas and define the regular fragment of our enriched logic by taking conjunctions and existential quantification of those. We then characterize $\mathcal {V}$-categories of models of regular theories as enriched injectivity classes in the $\mathcal {V}$-category of structures. These notions rely on the choice of an orthogonal factorization system $(\mathcal {E},\mathcal {M})$ on $\mathcal {V}$ which will be used, in particular, to interpret relation symbols and existential quantification.
In this paper, we investigate locally finitely presented pure semisimple (hereditary) Grothendieck categories. We show that every locally finitely presented pure semisimple (resp., hereditary) Grothendieck category $\mathscr {A}$ is equivalent to the category of left modules over a left pure semisimple (resp., left hereditary) ring when $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ is a QF-3 category, and every representable functor in $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ has finitely generated essential socle. In fact, we show that there exists a bijection between Morita equivalence classes of left pure semisimple (resp., left hereditary) rings $\Lambda $ and equivalence classes of locally finitely presented pure semisimple (resp., hereditary) Grothendieck categories $\mathscr {A}$ that $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ is a QF-3 category, and every representable functor in $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ has finitely generated essential socle. To prove this result, we study left pure semisimple rings by using Auslander’s ideas. We show that there exists, up to equivalence, a bijection between the class of left pure semisimple rings and the class of rings with nice homological properties. These results extend the Auslander and Ringel–Tachikawa correspondence to the class of left pure semisimple rings. As a consequence, we give several equivalent statements to the pure semisimplicity conjecture.
We extend the Kechris–Pestov–Todorčević correspondence to weak Fraïssé categories and automorphism groups of generic objects. The new ingredient is the weak Ramsey property. We demonstrate the theory on several examples including monoid categories, the category of almost linear orders and categories of strong embeddings of trees.
We construct a flat model structure on the category ${_{\mathcal {Q},\,R}\mathsf {Mod}}$ of additive functors from a small preadditive category $\mathcal {Q}$ satisfying certain conditions to the module category ${_{R}\mathsf {Mod}}$ over an associative ring $R$, whose homotopy category is the $\mathcal {Q}$-shaped derived category introduced by Holm and Jørgensen. Moreover, we prove that for an arbitrary associative ring $R$, an object in ${_{\mathcal {Q},\,R}\mathsf {Mod}}$ is Gorenstein projective (resp., Gorenstein injective, Gorenstein flat, projective coresolving Gorenstein flat) if and only if so is its value on each object of $\mathcal {Q}$, and hence improve a result by Dell'Ambrogio, Stevenson and Šťovíček.
We prove an isomorphism theorem between the canonical denotation systems for large natural numbers and large countable ordinal numbers, linking two fundamental concepts in Proof Theory. The first one is fast-growing hierarchies. These are sequences of functions on $\mathbb {N}$ obtained through processes such as the ones that yield multiplication from addition, exponentiation from multiplication, etc. and represent the canonical way of speaking about large finite numbers. The second one is ordinal collapsing functions, which represent the best-known method of describing large computable ordinals.
We observe that fast-growing hierarchies can be naturally extended to functors on the categories of natural numbers and of linear orders. The isomorphism theorem asserts that the categorical extensions of binary fast-growing hierarchies to ordinals are isomorphic to denotation systems given by cardinal collapsing functions. As an application of this fact, we obtain a restatement of the subsystem $\Pi ^1_1$-${\mathsf {CA_0}}$ of analysis as a higher-type well-ordering principle asserting that binary fast-growing hierarchies preserve well-foundedness.
We extend the group-theoretic notion of conditional flatness for a localization functor to any pointed category, and investigate it in the context of homological categories and of semi-abelian categories. In the presence of functorial fiberwise localization, analogous results to those obtained in the category of groups hold, and we provide existence theorems for certain localization functors in specific semi-abelian categories. We prove that a Birkhoff subcategory of an ideal determined category yields a conditionally flat localization, and explain how conditional flatness corresponds to the property of admissibility of an adjunction from the point of view of categorical Galois theory. Under the assumption of fiberwise localization, we give a simple criterion to determine when a (normal epi)-reflection is a torsion-free reflection. This is shown to apply, in particular, to nullification functors in any semi-abelian variety of universal algebras. We also relate semi-left-exactness for a localization functor L with what is called right properness for the L-local model structure.
We give a level-by-level analysis of the Weak Vopěnka Principle for definable classes of relational structures ($\mathrm {WVP}$), in accordance with the complexity of their definition, and we determine the large-cardinal strength of each level. Thus, in particular, we show that $\mathrm {WVP}$ for $\Sigma _2$-definable classes is equivalent to the existence of a strong cardinal. The main theorem (Theorem 5.11) shows, more generally, that $\mathrm {WVP}$ for $\Sigma _n$-definable classes is equivalent to the existence of a $\Sigma _n$-strong cardinal (Definition 5.1). Hence, $\mathrm {WVP}$ is equivalent to the existence of a $\Sigma _n$-strong cardinal for all $n<\omega $.
Pirashvili’s Dold–Kan type theorem for finite pointed sets follows from the identification in terms of surjections of the morphisms between the tensor powers of a functor playing the role of the augmentation ideal; these functors are projective. We give an unpointed analogue of this result: namely, we compute the morphisms between the tensor powers of the corresponding functor in the unpointed context. We also calculate the Ext groups between such objects, in particular showing that these functors are not projective; this is an important difference between the pointed and unpointed contexts. This work is motivated by our functorial analysis of the higher Hochschild homology of a wedge of circles.
In this paper, we give an axiomatization of the ordinal number system, in the style of Dedekind’s axiomatization of the natural number system. The latter is based on a structure $(N,0,s)$ consisting of a set N, a distinguished element $0\in N$ and a function $s\colon N\to N$. The structure in our axiomatization is a triple $(O,L,s)$, where O is a class, L is a class function defined on all s-closed ‘subsets’ of O, and s is a class function $s\colon O\to O$. In fact, we develop the theory relative to a Grothendieck-style universe (minus the power set axiom), as a way of bringing the natural and the ordinal cases under one framework. We also establish a universal property for the ordinal number system, analogous to the well-known universal property for the natural number system.
We describe an organizing framework for the study of infinitary combinatorics. This framework is Čech cohomology. It describes ZFC principles distinguishing among the ordinals of the form $\omega _n$. More precisely, this framework correlates each $\omega _n$ with an $(n+1)$-dimensional generalization of Todorcevic’s walks technique, and begins to account for that technique’s “unreasonable effectiveness” on $\omega _1$.
We show in contrast that on higher cardinals $\kappa $, the existence of these principles is frequently independent of the ZFC axioms. Finally, we detail implications of these phenomena for the computation of strong homology groups and higher derived limits, deriving independence results in algebraic topology and homological algebra, respectively, in the process.
The paper gives a simple proof of Graev’s theorem (asserting that the free product of Hausdorff topological groups is Hausdorff) for a particular case which includes the countable case of $k_\omega $-groups and the countable case of Lindelöf P-groups. For this it is shown that in these particular cases the topology of the free product of Hausdorff topological groups coincides with the $X_0$-topology in the Mal’cev sense, where X is the disjoint union of the topological groups identifying their units.
There are well-known identities involving the Ext bifunctor, coproducts, and products in AB4 abelian categories with enough projectives. Namely, for every such category \[\mathcal{A}\], given an object X and a set of objects \[{\{ {{\text{A}}_{\text{i}}}\} _{{\text{i}} \in {\text{I}}}}\], an isomorphism \[Ext_\mathcal{A}^{\text{n}}({ \oplus _{{\text{i}} \in {\text{I}}}}{{\text{A}}_{\text{i}}},{\text{X}}) \cong \prod\nolimits_{{\text{i}} \in {\text{I}}} {Ext_\mathcal{A}^{\text{n}}({{\text{A}}_{\text{i}}},{\text{X}})} \] can be built, where \[Ex{t^{\text{n}}}\] is the nth derived functor of the Hom functor. The goal of this paper is to show a similar isomorphism for the nth Yoneda Ext, which is a functor equivalent to \[Ex{t^{\text{n}}}\] that can be defined in more general contexts. The desired isomorphism is constructed explicitly by using colimits in AB4 abelian categories with not necessarily enough projectives nor injectives, extending a result by Colpi and Fuller in [8]. Furthermore, the isomorphisms constructed are used to characterize AB4 categories. A dual result is also stated.
For each recollement of triangulated categories, there is an epivalence between the middle category and the comma category associated with a triangle functor from the category on the right to the category on the left. For a morphic enhancement of a triangulated category $\mathcal {T}$, there are three explicit ideals of the enhancing category, whose corresponding factor categories are all equivalent to the module category over $\mathcal {T}$. Examples related to inflation categories and weighted projective lines are discussed.
The purpose of this paper is, as part of the stratification of Cohen–Macaulay rings, to investigate the question of when the fiber products are almost Gorenstein rings. We show that the fiber product $R \times _T S$ of Cohen–Macaulay local rings R, S of the same dimension $d>0$ over a regular local ring T with $\dim T=d-1$ is an almost Gorenstein ring if and only if so are R and S. In addition, the other generalizations of Gorenstein properties are also explored.
We introduce a notion of complexity of diagrams (and, in particular, of objects and morphisms) in an arbitrary category, as well as a notion of complexity of functors between categories equipped with complexity functions. We discuss several examples of this new definition in categories of wide common interest such as finite sets, Boolean functions, topological spaces, vector spaces, semilinear and semialgebraic sets, graded algebras, affine and projective varieties and schemes, and modules over polynomial rings. We show that on one hand categorical complexity recovers in several settings classical notions of nonuniform computational complexity (such as circuit complexity), while on the other hand it has features that make it mathematically more natural. We also postulate that studying functor complexity is the categorical analog of classical questions in complexity theory about separating different complexity classes.
In the present paper we use the theory of exact completions to study categorical properties of small setoids in Martin-Löf type theory and, more generally, of models of the Constructive Elementary Theory of the Category of Sets, in terms of properties of their subcategories of choice objects (i.e., objects satisfying the axiom of choice). Because of these intended applications, we deal with categories that lack equalisers and just have weak ones, but whose objects can be regarded as collections of global elements. In this context, we study the internal logic of the categories involved, and employ this analysis to give a sufficient condition for the local cartesian closure of an exact completion. Finally, we apply this result to show when an exact completion produces a model of CETCS.
Let $R$ be a ring and $T$ be a good Wakamatsu-tilting module with $S=\text{End}(T_{R})^{op}$. We prove that $T$ induces an equivalence between stable repetitive categories of $R$ and $S$ (i.e., stable module categories of repetitive algebras $\hat{R}$ and ${\hat{S}}$). This shows that good Wakamatsu-tilting modules seem to behave in Morita theory of stable repetitive categories as that tilting modules of finite projective dimension behave in Morita theory of derived categories.
On établit une décomposition de l’homologie stable des groupes d’automorphismes des groupes libres à coefficients polynomiaux contravariants en termes d’homologie des foncteurs. Elle permet plusieurs calculs explicites, qui recoupent des résultats établis de manière indépendante par O. Randal-Williams et généralisent certains d’entre eux. Nos méthodes reposent sur l’examen d’extensions de Kan dérivées associées à plusieurs catégories de groupes libres, la généralisation d’un critère d’annulation homologique à coefficients polynomiaux dû à Scorichenko, le théorème de Galatius identifiant l’homologie stable des groupes d’automorphismes des groupes libres à celle des groupes symétriques, la machinerie des $\unicode[STIX]{x1D6E4}$-espaces et le scindement de Snaith.
in a symmetric monoidal $(\infty ,2)$-category $\mathscr{E}$ where $X,Y\in \mathscr{E}$ are dualizable objects and $\unicode[STIX]{x1D711}$ admits a right adjoint we construct a natural morphism $\mathsf{Tr}_{\mathscr{E}}(F_{X})\xrightarrow[{}]{~~~~~}\mathsf{Tr}_{\mathscr{E}}(F_{Y})$between the traces of $F_{X}$ and $F_{Y}$, respectively. We then apply this formalism to the case when $\mathscr{E}$ is the $(\infty ,2)$-category of $k$-linear presentable categories which in combination of various calculations in the setting of derived algebraic geometry gives a categorical proof of the classical Atiyah–Bott formula (also known as the Holomorphic Lefschetz fixed point formula).