To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For $\ell \geq 3$, an $\ell$-uniform hypergraph is disperse if the number of edges induced by any set of $\ell +1$ vertices is 0, 1, $\ell$, or $\ell +1$. We show that every disperse $\ell$-uniform hypergraph on $n$ vertices contains a clique or independent set of size $n^{\Omega _{\ell }(1)}$, answering a question of the first author and Tomon. To this end, we prove several structural properties of disperse hypergraphs.
A seminal result of Komlós, Sárközy, and Szemerédi states that any $n$-vertex graph $G$ with minimum degree at least $(1/2+\alpha )n$ contains every $n$-vertex tree $T$ of bounded degree. Recently, Pham, Sah, Sawhney, and Simkin extended this result to show that such graphs $G$ in fact support an optimally spread distribution on copies of a given $T$, which implies, using the recent breakthroughs on the Kahn-Kalai conjecture, the robustness result that $T$ is a subgraph of sparse random subgraphs of $G$ as well. Pham, Sah, Sawhney, and Simkin construct their optimally spread distribution by following closely the original proof of the Komlós-Sárközy-Szemerédi theorem which uses the blow-up lemma and the Szemerédi regularity lemma. We give an alternative, regularity-free construction that instead uses the Komlós-Sárközy-Szemerédi theorem (which has a regularity-free proof due to Kathapurkar and Montgomery) as a black box. Our proof is based on the simple and general insight that, if $G$ has linear minimum degree, almost all constant-sized subgraphs of $G$ inherit the same minimum degree condition that $G$ has.
We establish a polynomial ergodic theorem for actions of the affine group of a countable field K. As an application, we deduce—via a variant of Furstenberg’s correspondence principle—that for fields of characteristic zero, any ‘large’ set $E\subset K$ contains ‘many’ patterns of the form $\{p(u)+v,uv\}$, for every non-constant polynomial $p(x)\in K[x]$. Our methods are flexible enough that they allow us to recover analogous density results in the setting of finite fields and, with the aid of a finitistic variant of Bergelson’s ‘colouring trick’, show that for $r\in \mathbb N$ fixed, any r-colouring of a large enough finite field will contain monochromatic patterns of the form $\{u,p(u)+v,uv\}$. In a different direction, we obtain a double ergodic theorem for actions of the affine group of a countable field. An adaptation of the argument for affine actions of finite fields leads to a generalization of a theorem of Shkredov. Finally, to highlight the utility of the aforementioned finitistic ‘colouring trick’, we provide a conditional, elementary generalization of Green and Sanders’ $\{u,v,u+v,uv\}$ theorem.
Here we consider the hypergraph Turán problem in uniformly dense hypergraphs as was suggested by Erdős and Sós. Given a $3$-graph $F$, the uniform Turán density $\pi _{\boldsymbol{\therefore }}(F)$ of $F$ is defined as the supremum over all $d\in [0,1]$ for which there is an $F$-free uniformly $d$-dense $3$-graph, where uniformly $d$-dense means that every linearly sized subhypergraph has density at least $d$. Recently, Glebov, Král’, and Volec and, independently, Reiher, Rödl, and Schacht proved that $\pi _{\boldsymbol{\therefore }}(K_4^{(3)-})=\frac {1}{4}$, solving a conjecture by Erdős and Sós. Despite substantial attention, the uniform Turán density is still only known for very few hypergraphs. In particular, the problem due to Erdős and Sós to determine $\pi _{\boldsymbol{\therefore }}(K_4^{(3)})$ remains wide open.
In this work, we determine the uniform Turán density of the $3$-graph on five vertices that is obtained from $K_4^{(3)-}$ by adding an additional vertex whose link forms a matching on the vertices of $K_4^{(3)-}$. Further, we point to two natural intermediate problems on the way to determining $\pi _{\boldsymbol{\therefore }}(K_4^{(3)})$, and solve the first of these.
In 1967, Klarner proposed a problem concerning the existence of reflecting n-queens configurations. The problem considers the feasibility of placing n mutually nonattacking queens on the reflecting chessboard, an $n\times n$ chessboard with a $1\times n$ “reflecting strip” of squares added along one side of the board. A queen placed on the reflecting chessboard can attack the squares in the same row, column, and diagonal, with the additional feature that its diagonal path can be reflected via the reflecting strip. Klarner noted the equivalence of this problem to a number theory problem proposed by Slater, which asks: for which n is it possible to pair up the integers 1 through n with the integers $n+1$ through $2n$ such that no two of the sums or differences of the n pairs of integers are the same. We prove the existence of reflecting n-queens configurations for all sufficiently large n, thereby resolving both Slater’s and Klarner’s questions for all but a finite number of integers.
The smallest eigenvalue of a graph is the smallest eigenvalue of its adjacency matrix. We show that the family of graphs with smallest eigenvalue at least $-\lambda $ can be defined by a finite set of forbidden induced subgraphs if and only if $\lambda < \lambda ^*$, where $\lambda ^* = \rho ^{1/2} + \rho ^{-1/2} \approx 2.01980$, and $\rho $ is the unique real root of $x^3 = x + 1$. This resolves a question raised by Bussemaker and Neumaier. As a byproduct, we find all the limit points of smallest eigenvalues of graphs, supplementing Hoffman’s work on those limit points in $[-2, \infty )$.
We also prove that the same conclusion about forbidden subgraph characterization holds for signed graphs. Our impetus for the study of signed graphs is to determine the maximum cardinality of a spherical two-distance set with two fixed angles (one acute and one obtuse) in high dimensions. Denote by $N_{\alpha , \beta }(d)$ the maximum number of unit vectors in $\mathbb {R}^d$ where all pairwise inner products lie in $\{\alpha , \beta \}$ with $-1 \le \beta < 0 \le \alpha < 1$. Very recently Jiang, Tidor, Yao, Zhang, and Zhao determined the limit of $N_{\alpha , \beta }(d)/d$ as $d\to \infty $ when $\alpha + 2\beta < 0$ or $(1-\alpha )/(\alpha -\beta ) \in \{1,\sqrt 2,\sqrt 3\}$, and they proposed a conjecture on the limit in terms of eigenvalue multiplicities of signed graphs. We establish their conjecture whenever $(1-\alpha )/(\alpha - \beta ) < \lambda ^*$.
Given two graphs G and H, the Ramsey number $R(G,H)$ is the smallest positive integer N such that every graph of order N contains G or its complement contains H as a subgraph. Let $C_n$ denote the cycle on n vertices and let $tW_{2m+1}$ denote the disjoint union of t copies of the $(2m+2)$-vertex wheel $W_{2m+1}$. We show that for integers $m\ge 1$, $t\ge 2$ and $n\ge (6m+3)t-6m+999$,
This result extends several previous results and settles a conjecture posed by Sudarsana [‘A note on the Ramsey number for cycle with respect to multiple copies of wheels’, Electron. J. Graph Theory Appl.9(2) (2021), 561–566].
We show that for every non-spherical set X in $\mathbb {E}^d$, there exists a natural number m and a red/blue-coloring of $\mathbb {E}^n$ for every n such that there is no red copy of X and no blue progression of length m with each consecutive point at distance $1$. This verifies a conjecture of Wu and the first author.
Let n be a positive integer, let $0<p\leqslant p'\leqslant \frac 12$, and let $\ell \leqslant pn$ be a nonnegative integer. We prove that if $\mathcal {F},\mathcal {G}\subseteq \{0,1\}^n$ are two families whose cross intersections forbid $\ell $—that is, they satisfy $|A\cap B|\neq \ell $ for every $A\in \mathcal {F}$ and every $B\in \mathcal {G}$ – then, setting $t:= \min \{\ell ,pn-\ell \}$, we have the subgaussian bound
For every positive integer d, we show that there must exist an absolute constant $c \gt 0$ such that the following holds: for any integer $n \geqslant cd^{7}$ and any red-blue colouring of the one-dimensional subspaces of $\mathbb{F}_{2}^{n}$, there must exist either a d-dimensional subspace for which all of its one-dimensional subspaces get coloured red or a 2-dimensional subspace for which all of its one-dimensional subspaces get coloured blue. This answers recent questions of Nelson and Nomoto, and confirms that for any even plane binary matroid N, the class of N-free, claw-free binary matroids is polynomially $\chi$-bounded.
Our argument will proceed via a reduction to a well-studied additive combinatorics problem, originally posed by Green: given a set $A \subset \mathbb{F}_{2}^{n}$ with density $\alpha \in [0,1]$, what is the largest subspace that we can find in $A+A$? Our main contribution to the story is a new result for this problem in the regime where $1/\alpha$ is large with respect to n, which utilises ideas from the recent breakthrough paper of Kelley and Meka on sets of integers without three-term arithmetic progressions.
that hold for all subsets A of the same discrete cubes. A general theory, analogous to the work of de Dios Pont, Greenfeld, Ivanisvili, and Madrid, is developed to show that the critical exponents are related by $p_{k,n} t_{k,n} = 2^k$. This is used to prove the three main results of the article:
• an explicit formula for $t_{k,2}$, which generalizes a theorem by Kane and Tao,
• two-sided asymptotic estimates for $t_{k,n}$ as $n\to\infty$ for a fixed $k\geqslant2$, which generalize a theorem by Shao, and
• a precise asymptotic formula for $t_{k,n}$ as $k\to\infty$ for a fixed $n\geqslant2$.
We introduce the notion of echeloned spaces – an order-theoretic abstraction of metric spaces. The first step is to characterize metrizable echeloned spaces. It turns out that morphisms between metrizable echeloned spaces are uniformly continuous or have a uniformly discrete image. In particular, every automorphism of a metrizable echeloned space is uniformly continuous, and for every metric space with midpoints, the automorphisms of the induced echeloned space are precisely the dilations.
Next, we focus on finite echeloned spaces. They form a Fraïssé class, and we describe its Fraïssé-limit both as the echeloned space induced by a certain homogeneous metric space and as the result of a random construction. Building on this, we show that the class of finite ordered echeloned spaces is Ramsey. The proof of this result combines a combinatorial argument by Nešetřil and Hubička with a topological-dynamical point of view due to Kechris, Pestov and Todorčević. Finally, using the method of Katětov functors due to Kubiś and Mašulović, we prove that the full symmetric group on a countable set topologically embeds into the automorphism group of the countable universal homogeneous echeloned space.
Ruzsa asked whether there exist Fourier-uniform subsets of $\mathbb Z/N\mathbb Z$ with density $\alpha$ and 4-term arithmetic progression (4-AP) density at most $\alpha^C$, for arbitrarily large C. Gowers constructed Fourier uniform sets with density $\alpha$ and 4-AP density at most $\alpha^{4+c}$ for some small constant $c \gt 0$. We show that an affirmative answer to Ruzsa’s question would follow from the existence of an $N^{o(1)}$-colouring of [N] without symmetrically coloured 4-APs. For a broad and natural class of constructions of Fourier-uniform subsets of $\mathbb Z/N\mathbb Z$, we show that Ruzsa’s question is equivalent to our arithmetic Ramsey question.
We prove analogous results for all even-length APs. For each odd $k\geq 5$, we show that there exist $U^{k-2}$-uniform subsets of $\mathbb Z/N\mathbb Z$ with density $\alpha$ and k-AP density at most $\alpha^{c_k \log(1/\alpha)}$. We also prove generalisations to arbitrary one-dimensional patterns.
Let us say that a graph $G$ is Ramsey for a tuple $(H_1,\ldots,H_r)$ of graphs if every r-colouring of the edges of G contains a monochromatic copy of $H_i$ in colour i, for some $i \in [\![{r}]\!]$. A famous conjecture of Kohayakawa and Kreuter, extending seminal work of Rödl and Ruciński, predicts the threshold at which the binomial random graph $G_{n,p}$ becomes Ramsey for $(H_1,\ldots,H_r)$ asymptotically almost surely.
In this paper, we resolve the Kohayakawa–Kreuter conjecture for almost all tuples of graphs. Moreover, we reduce its validity to the truth of a certain deterministic statement, which is a clear necessary condition for the conjecture to hold. All of our results actually hold in greater generality, when one replaces the graphs $H_1,\ldots,H_r$ by finite families $\mathcal{H}_1,\ldots,\mathcal{H}_r$. Additionally, we pose a natural (deterministic) graph-partitioning conjecture, which we believe to be of independent interest, and whose resolution would imply the Kohayakawa–Kreuter conjecture.
We study the generalized Ramsey–Turán function $\mathrm {RT}(n,K_s,K_t,o(n))$, which is the maximum possible number of copies of $K_s$ in an n-vertex $K_t$-free graph with independence number $o(n)$. The case when $s=2$ was settled by Erdős, Sós, Bollobás, Hajnal, and Szemerédi in the 1980s. We combinatorially resolve the general case for all $s\ge 3$, showing that the (asymptotic) extremal graphs for this problem have simple (bounded) structures. In particular, it implies that the extremal structures follow a periodic pattern when t is much larger than s. Our results disprove a conjecture of Balogh, Liu, and Sharifzadeh and show that a relaxed version does hold.
We prove that, for any finite set of minimal r-graph patterns, there is a finite family $\mathcal F$ of forbidden r-graphs such that the extremal Turán constructions for $\mathcal F$ are precisely the maximum r-graphs obtainable from mixing the given patterns in any way via blowups and recursion. This extends the result by the second author [30], where the above statement was established for a single pattern.
We present two applications of this result. First, we construct a finite family $\mathcal F$ of $3$-graphs such that there are exponentially many maximum $\mathcal F$-free $3$-graphs of each large order n and, moreover, the corresponding Turán problem is not finitely stable. Second, we show that there exists a finite family $\mathcal {F}$ of $3$-graphs whose feasible region function attains its maximum on a Cantor-type set of positive Hausdorff dimension.
We construct skew corner-free subsets of $[n]^2$ of size $n^2\exp(\!-O(\sqrt{\log n}))$, thereby improving on recent bounds of the form $\Omega(n^{5/4})$ obtained by Pohoata and Zakharov. We also prove that any such set has size at most $O(n^2(\log n)^{-c})$ for some absolute constant $c \gt 0$. This improves on the previously best known upper bound $O(n^2(\log\log n)^{-c})$, coming from Shkredov’s work on the corners theorem.
Ramsey’s theorem guarantees for every graph H that any 2-edge-coloring of a sufficiently large complete graph contains a monochromatic copy of H. In 1962, Erdős conjectured that the random 2-edge-coloring minimizes the number of monochromatic copies of $K_k$, and the conjecture was extended by Burr and Rosta to all graphs. In the late 1980s, the conjectures were disproved by Thomason and Sidorenko, respectively. A classification of graphs whose number of monochromatic copies is minimized by the random 2-edge-coloring, which are referred to as common graphs, remains a challenging open problem. If Sidorenko’s conjecture, one of the most significant open problems in extremal graph theory, is true, then every 2-chromatic graph is common and, in fact, no 2-chromatic common graph unsettled for Sidorenko’s conjecture is known. While examples of 3-chromatic common graphs were known for a long time, the existence of a 4-chromatic common graph was open until 2012, and no common graph with a larger chromatic number is known.
We construct connected k-chromatic common graphs for every k. This answers a question posed by Hatami et al. [Non-three-colourable common graphs exist, Combin. Probab. Comput. 21 (2012), 734–742], and a problem listed by Conlon et al. [Recent developments in graph Ramsey theory, in Surveys in combinatorics 2015, London Mathematical Society Lecture Note Series, vol. 424 (Cambridge University Press, Cambridge, 2015), 49–118, Problem 2.28]. This also answers in a stronger form the question raised by Jagger et al. [Multiplicities of subgraphs, Combinatorica 16 (1996), 123–131] whether there exists a common graph with chromatic number at least four.
We address a core partition regularity problem in Ramsey theory by proving that every finite coloring of the positive integers contains monochromatic Pythagorean pairs (i.e., $x,y\in {\mathbb N}$ such that $x^2\pm y^2=z^2$ for some $z\in {\mathbb N}$). We also show that partitions generated by level sets of multiplicative functions taking finitely many values always contain Pythagorean triples. Our proofs combine known Gowers uniformity properties of aperiodic multiplicative functions with a novel and rather flexible approach based on concentration estimates of multiplicative functions.
A left-variable word over an alphabet A is a word over $A \cup \{\star \}$ whose first letter is the distinguished symbol $\star $ standing for a placeholder. The ordered variable word theorem ($\mathsf {OVW}$), also known as Carlson–Simpson’s theorem, is a tree partition theorem, stating that for every finite alphabet A and every finite coloring of the words over A, there exists a word $c_0$ and an infinite sequence of left-variable words $w_1, w_2, \dots $ such that $\{ c_0 \cdot w_1[a_1] \cdot \dots \cdot w_k[a_k] : k \in \mathbb {N}, a_1, \dots , a_k \in A \}$ is monochromatic.
In this article, we prove that $\mathsf {OVW}$ is $\Pi ^0_4$-conservative over $\mathsf {RCA}_0 + \mathsf {B}\Sigma ^0_2$. This implies in particular that $\mathsf {OVW}$ does not imply $\mathsf {ACA}_0$ over $\mathsf {RCA}_0$. This is the first principle for which the only known separation from $\mathsf {ACA}_0$ involves non-standard models.