We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that $\alpha $-stable Lévy motions can be simulated by any ergodic and aperiodic probability-preserving transformation. Namely we show that: for $0<\alpha <1$ and every $\alpha $-stable Lévy motion ${\mathbb {W}}$, there exists a function f whose partial sum process converges in distribution to ${\mathbb {W}}$; for $1\leq \alpha <2$ and every symmetric $\alpha $-stable Lévy motion, there exists a function f whose partial sum process converges in distribution to ${\mathbb {W}}$; for $1< \alpha <2$ and every $-1\leq \beta \leq 1$ there exists a function f whose associated time series is in the classical domain of attraction of an $S_\alpha (\ln (2), \beta ,0)$ random variable.
where $\langle \cdot \rangle $ denotes the distance from the nearest integral vector. In this article, we obtain upper bounds for the Hausdorff dimensions of the set of $\epsilon $-badly approximable matrices for fixed target b and the set of $\epsilon $-badly approximable targets for fixed matrix A. Moreover, we give a Diophantine condition of A equivalent to the full Hausdorff dimension of the set of $\epsilon $-badly approximable targets for fixed A. The upper bounds are established by effectivizing entropy rigidity in homogeneous dynamics, which is of independent interest. For the A-fixed case, our method also works for the weighted setting where the supremum norms are replaced by certain weighted quasinorms.
In the context of random amenable group actions, we introduce the notions of random upper metric mean dimension with potentials and the random upper measure-theoretical metric mean dimension. Besides, we establish a variational principle for the random upper metric mean dimensions. At the end, we study the equilibrium state for random upper metric mean dimensions.
Feng and Huang [Variational principle for weighted topological pressure. J. Math. Pures Appl. (9)106 (2016), 411–452] introduced weighted topological entropy and pressure for factor maps between dynamical systems and established its variational principle. Tsukamoto [New approach to weighted topological entropy and pressure. Ergod. Th. & Dynam. Sys.43 (2023), 1004–1034] redefined those invariants quite differently for the simplest case and showed via the variational principle that the two definitions coincide. We generalize Tsukamoto’s approach, redefine the weighted topological entropy and pressure for higher dimensions, and prove the variational principle. Our result allows for an elementary calculation of the Hausdorff dimension of affine-invariant sets such as self-affine sponges and certain sofic sets that reside in Euclidean space of arbitrary dimension.
We prove that a generic probability measure-preserving (p.m.p.) action of a countable amenable group G has scaling entropy that cannot be dominated by a given rate of growth. As a corollary, we obtain that there does not exist a topological action of G for which the set of ergodic invariant measures coincides with the set of all ergodic p.m.p. G-systems of entropy zero. We also prove that a generic action of a residually finite amenable group has scaling entropy that cannot be bounded from below by a given sequence. In addition, we show an example of an amenable group that has such a lower bound for every free p.m.p. action.
We apply the Evans–Kishimoto intertwining argument to the classification of actions of discrete amenable groups into the normalizer of a full group of an ergodic transformation. Our proof does not depend on the types of ergodic transformations.
We prove $\times a \times b$ measure rigidity for multiplicatively independent pairs when $a\in \mathbb {N}$ and $b>1$ is a ‘specified’ real number (the b-expansion of $1$ has a tail or bounded runs of $0$s) under a positive entropy condition. This is done by proving a mean decay of the Fourier series of the point masses average along $\times b$ orbits. We also prove a quantitative version of this decay under stronger conditions on the $\times a$ invariant measure. The quantitative version together with the $\times b$ invariance of the limit measure is a step toward a general Host-type pointwise equidistribution theorem in which the equidistribution is for Parry measure instead of Lebesgue. We show that finite memory length measures on the a-shift meet the mentioned conditions for mean convergence. Our main proof relies on techniques of Hochman.
We first introduce the concept of weak random periodic solutions of random dynamical systems. Then, we discuss the existence of such periodic solutions. Further, we introduce the definition of weak random periodic measures and study their relationship with weak random periodic solutions. In particular, we establish the existence of invariant measures of random dynamical systems by virtue of their weak random periodic solutions. We use concrete examples to illustrate the weak random periodic phenomena of dynamical systems induced by random and stochastic differential equations.
We prove that, although the map is singular, its square preserves the Lebesgue measure and is strongly mixing, thus ergodic, with respect to it. We discuss the extension of the results to more general erasing maps.
We examine multiple ergodic averages of commuting transformations with polynomial iterates in which the polynomials may be pairwise dependent. In particular, we show that such averages are controlled by the Gowers–Host–Kra seminorms whenever the system satisfies some mild ergodicity assumptions. Combining this result with the general criteria for joint ergodicity established in our earlier work, we determine a necessary and sufficient condition under which such averages are jointly ergodic, in the sense that they converge in the mean to the product of integrals, or weakly jointly ergodic, in that they converge to the product of conditional expectations. As a corollary, we deduce a special case of a conjecture by Donoso, Koutsogiannis, and Sun in a stronger form.
We use Gaussian measure-preserving systems to prove the existence and genericity of Lebesgue measure-preserving transformations $T:[0,1]\rightarrow [0,1]$ which exhibit both mixing and rigidity behavior along families of asymptotically linearly independent sequences. Let $\unicode{x3bb} _1,\ldots ,\unicode{x3bb} _N\in [0,1]$ and let $\phi _1,\ldots ,\phi _N:\mathbb N\rightarrow \mathbb Z$ be asymptotically linearly independent (that is, for any $(a_1,\ldots ,a_N)\in \mathbb Z^N\setminus \{\vec 0\}$, $\lim _{k\rightarrow \infty }|\sum _{j=1}^Na_j\phi _j(k)|=\infty $). Then the class of invertible Lebesgue measure-preserving transformations $T:[0,1]\rightarrow [0,1]$ for which there exists a sequence $(n_k)_{k\in \mathbb {N}}$ in $\mathbb {N}$ with for any measurable $A,B\subseteq [0,1]$ and any $j\in \{1,\ldots ,N\}$, is generic. This result is a refinement of a result due to Stëpin (Theorem 2 in [Spectral properties of generic dynamical systems. Math. USSR-Izv.29(1) (1987), 159–192]) and a generalization of a result due to Bergelson, Kasjan, and Lemańczyk (Corollary F in [Polynomial actions of unitary operators and idempotent ultrafilters. Preprint, 2014, arXiv:1401.7869]).
A fundamental question in the field of cohomology of dynamical systems is to determine when there are solutions to the coboundary equation:
$$ \begin{align*} f = g - g \circ T. \end{align*} $$
In many cases, T is given to be an ergodic invertible measure-preserving transformation on a standard probability space
$(X, {\mathcal B}, \mu )$
and is contained in
$L^p$
for
$p \geq 0$
. We extend previous results by showing for any measurable f that is non-zero on a set of positive measure, the class of measure-preserving T with a measurable solution g is meager (including the case where
$\int _X f\,d\mu = 0$
). From this fact, a natural question arises: given f, does there always exist a solution pair T and g? In regards to this question, our main results are as follows. Given measurable f, there exist an ergodic invertible measure-preserving transformation T and measurable function g such that
$f(x) = g(x) - g(Tx)$
for almost every (a.e.)
$x\in X$
, if and only if
$\int _{f> 0} f\,d\mu = - \int _{f < 0} f\,d\mu $
(whether finite or
$\infty $
). Given mean-zero
$f \in L^p(\mu )$
for
$p \geq 1$
, there exist an ergodic invertible measure-preserving T and
$g \in L^{p-1}(\mu )$
such that
$f(x) = g(x) - g( Tx )$
for a.e.
$x \in X$
. In some sense, the previous existence result is the best possible. For
$p \geq 1$
, there exists a dense
$G_{\delta }$
set of mean-zero
$f \in L^p(\mu )$
such that for any ergodic invertible measure-preserving T and any measurable g such that
$f(x) = g(x) - g(Tx)$
almost everywhere, then
$g \notin L^q(\mu )$
for
$q> p - 1$
. Finally, it is shown that we cannot expect finite moments for solutions g, when
$f \in L^1(\mu )$
. In particular, given any such that
$\lim _{x\to \infty } \phi (x) = \infty $
, there exist mean-zero
$f \in L^1(\mu )$
such that for any solutions T and g, the transfer function g satisfies:
We establish the mean convergence for multiple ergodic averages with iterates given by distinct fractional powers of primes and related multiple recurrence results. A consequence of our main result is that every set of integers with positive upper density contains patterns of the form
$\{m,m+[p_n^a], m+[p_n^b]\}$
, where
$a,b$
are positive nonintegers and
$p_n$
denotes the nth prime, a property that fails if a or b is a natural number. Our approach is based on a recent criterion for joint ergodicity of collections of sequences, and the bulk of the proof is devoted to obtaining good seminorm estimates for the related multiple ergodic averages. The input needed from number theory are upper bounds for the number of prime k-tuples that follow from elementary sieve theory estimates and equidistribution results of fractional powers of primes in the circle.
The f-invariant is an isomorphism invariant of free-group measure-preserving actions introduced by Lewis Bowen, who first used it to show that two finite-entropy Bernoulli shifts over a finitely generated free group can be isomorphic only if their base measures have the same Shannon entropy. Bowen also showed that the f-invariant is a variant of sofic entropy; in particular, it is the exponential growth rate of the expected number of good models over a uniform random homomorphism. In this paper we present an analogous formula for the relative f-invariant and use it to prove a formula for the exponential growth rate of the expected number of good models over a random sofic approximation which is a type of stochastic block model.
We generalize the greedy and lazy
$\beta $
-transformations for a real base
$\beta $
to the setting of alternate bases
${\boldsymbol {\beta }}=(\beta _0,\ldots ,\beta _{p-1})$
, which were recently introduced by the first and second authors as a particular case of Cantor bases. As in the real base case, these new transformations, denoted
$T_{{\boldsymbol {\beta }}}$
and
$L_{{\boldsymbol {\beta }}}$
respectively, can be iterated in order to generate the digits of the greedy and lazy
${\boldsymbol {\beta }}$
-expansions of real numbers. The aim of this paper is to describe the measure-theoretical dynamical behaviors of
$T_{{\boldsymbol {\beta }}}$
and
$L_{{\boldsymbol {\beta }}}$
. We first prove the existence of a unique absolutely continuous (with respect to an extended Lebesgue measure, called the p-Lebesgue measure)
$T_{{\boldsymbol {\beta }}}$
-invariant measure. We then show that this unique measure is in fact equivalent to the p-Lebesgue measure and that the corresponding dynamical system is ergodic and has entropy
$({1}/{p})\log (\beta _{p-1}\cdots \beta _0)$
. We give an explicit expression of the density function of this invariant measure and compute the frequencies of letters in the greedy
${\boldsymbol {\beta }}$
-expansions. The dynamical properties of
$L_{{\boldsymbol {\beta }}}$
are obtained by showing that the lazy dynamical system is isomorphic to the greedy one. We also provide an isomorphism with a suitable extension of the
$\beta $
-shift. Finally, we show that the
${\boldsymbol {\beta }}$
-expansions can be seen as
$(\beta _{p-1}\cdots \beta _0)$
-representations over general digit sets and we compare both frameworks.
In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (ergodic) proof due to Furstenberg (Section 3). Furstenberg’s ergodic proof is striking because it utilizes intuitively foreign and infinitary resources to prove a finitary combinatorial result and does so in a perspicuous fashion. I claim that Furstenberg’s proof is explanatory in light of its clear expression of a crucial structural result, which provides the “reason why” Szemerédi’s theorem is true. This is, however, rather surprising: how can such intuitively different conceptual resources “get a grip on” the theorem to be proved? I account for this phenomenon by articulating a new construal of the content of a mathematical statement, which I call structural content (Section 4). I argue that the availability of structural content saves intuitive epistemic distinctions made in mathematical practice and simultaneously explicates the intervention of surprising and explanatorily rich conceptual resources. Structural content also disarms general arguments for thinking that impurity and explanatory power might come apart. Finally, I sketch a proposal that, once structural content is in hand, impure resources lead to explanatory proofs via suitably understood varieties of simplification and unification (Section 5).
Let
$\mathcal {P}$
be an (unbounded) countable multiset of primes (that is, every prime may appear multiple times) and let
$G=\bigoplus _{p\in \mathcal {P}}\mathbb {F}_p$
. We develop a Host–Kra structure theory for the universal characteristic factors of an ergodic G-system. More specifically, we generalize the main results of Bergelson, Tao and Ziegler [An inverse theorem for the uniformity seminorms associated with the action of
$\mathbb {F}_p^\infty $
. Geom. Funct. Anal.19(6) (2010), 1539–1596], who studied these factors in the special case
$\mathcal {P}=\{p,p,p,\ldots \}$
for some fixed prime p. As an application we deduce a Khintchine-type recurrence theorem in the flavor of Bergelson, Tao and Ziegler [Multiple recurrence and convergence results associated to
$F_p^\omega $
-actions. J. Anal. Math.127 (2015), 329–378] and Bergelson, Host and Kra [Multiple recurrence and nilsequences. Invent. Math.160(2) (2005), 261–303, with an appendix by I. Ruzsa].
Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present paper we give a systematic study of the packing topological entropy for a continuous G-action dynamical system
$(X,G)$
, where X is a compact metric space and G is a countable infinite discrete amenable group. We first prove a variational principle for amenable packing topological entropy: for any Borel subset Z of X, the packing topological entropy of Z equals the supremum of upper local entropy over all Borel probability measures for which the subset Z has full measure. Then we obtain an entropy inequality concerning amenable packing entropy. Finally, we show that the packing topological entropy of the set of generic points for any invariant Borel probability measure
$\mu $
coincides with the metric entropy if either
$\mu $
is ergodic or the system satisfies a kind of specification property.
Let X be a compact, geodesically complete, locally CAT(0) space such that the universal cover admits a rank-one axis. Assume X is not homothetic to a metric graph with integer edge lengths. Let
$P_t$
be the number of parallel classes of oriented closed geodesics of length at most t; then
$\lim \nolimits _{t \to \infty } P_t / ({e^{ht}}/{ht}) = 1$
, where h is the entropy of the geodesic flow on the space
$GX$
of parametrized unit-speed geodesics in X.
We show that self-similar measures on
$\mathbb R^d$
satisfying the weak separation condition are uniformly scaling. Our approach combines elementary ergodic theory with geometric analysis of the structure given by the weak separation condition.