Hostname: page-component-54dcc4c588-tfzs5 Total loading time: 0 Render date: 2025-10-12T07:47:37.065Z Has data issue: false hasContentIssue false

Beyond the broken tetrahedron

Published online by Cambridge University Press:  10 October 2025

August Y. Chen
Affiliation:
Cornell University, Ithaca, NY, USA
Bjarne Schülke*
Affiliation:
Extremal Combinatorics and Probability Group, Institute for Basic Science, Daejeon, South Korea
*
Corresponding author: Bjarne Schülke; Email: schuelke@ibs.re.kr

Abstract

Here we consider the hypergraph Turán problem in uniformly dense hypergraphs as was suggested by Erdős and Sós. Given a $3$-graph $F$, the uniform Turán density $\pi _{\boldsymbol{\therefore }}(F)$ of $F$ is defined as the supremum over all $d\in [0,1]$ for which there is an $F$-free uniformly $d$-dense $3$-graph, where uniformly $d$-dense means that every linearly sized subhypergraph has density at least $d$. Recently, Glebov, Král’, and Volec and, independently, Reiher, Rödl, and Schacht proved that $\pi _{\boldsymbol{\therefore }}(K_4^{(3)-})=\frac {1}{4}$, solving a conjecture by Erdős and Sós. Despite substantial attention, the uniform Turán density is still only known for very few hypergraphs. In particular, the problem due to Erdős and Sós to determine $\pi _{\boldsymbol{\therefore }}(K_4^{(3)})$ remains wide open.

In this work, we determine the uniform Turán density of the $3$-graph on five vertices that is obtained from $K_4^{(3)-}$ by adding an additional vertex whose link forms a matching on the vertices of $K_4^{(3)-}$. Further, we point to two natural intermediate problems on the way to determining $\pi _{\boldsymbol{\therefore }}(K_4^{(3)})$, and solve the first of these.

Information

Type
Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Balogh, J., Clemen, F. C. and Lidický, B. (2022) Hypergraph Turán Problems in, ell2-Norm, Surveys in Combina- Torics 2022, Vol. 481 London Math. Soc. Lecture Note Ser., Cambridge: Cambridge Univ. Press, pp. 2163. MR4421399Google Scholar
Bellmann, L. and Reiher, C. (2019) Turán’s theorem for the Fano plane. Combinatorica 39(5) 961982. DOI: https://doi.org/10.1007/s00493-019-3981-8. MR4039597.CrossRefGoogle Scholar
Berger, S., Piga, S, Reiher, C., Rödl, V. and Schacht, M. (2021) Turán density of cliques of order five in 3-uniform hypergraphs with quasirandom links. Procedia. Comput. Sci. 195 412418. DOI: https://doi.org/10.48550/ARXIV.2206.07354. MR4742567.CrossRefGoogle Scholar
Bucić, M., Cooper, J. W., KráI, D., Mohr, S. and Correia, D. M. (2023) Uniform Turán density of cycles. Trans. Amer. Math. Soc. 376(7) 47654809. DOI: 10.1090/tran/8873. MR4608432.10.1090/tran/8873CrossRefGoogle Scholar
De Caen, D. and Füredi, Z. (2000) The maximum size of 3-uniform hypergraphs not containing a Fano plane. J. Combin. Theory Ser. B 78(2) 274276. DOI: https://doi.org/10.1006/jctb.1999.1938. MR1750899.CrossRefGoogle Scholar
Erdős, P. (1990) Problems and results on graphs and hypergraphs: similarities and differences. In Mathematics of Ramsey Theory, Vol. 5 Algorithms Combin., Berlin: Springer, pp. 1228. DOI: https://doi.org/10.1007/978-3-642-72905-8_2. MR 1083590CrossRefGoogle Scholar
Erdős, P. and Simonovits, M. (1966) A limit theorem in graph theory. Studia Sci. Math. Hungar. 1 5157. MR 205876.Google Scholar
Erdős, P. and Sós, V. T. (1982) On Ramsey—Turán type theorems for hypergraphs. Combinatorica 2(3) 289295. DOI: https://doi.org/10.1007/BF02579235. MR 698654CrossRefGoogle Scholar
Erdős, P. and Stone, A. H. (1946) On the structure of linear graphs. Bull. Amer. Math. Soc. 52 10871091.10.1090/S0002-9904-1946-08715-7CrossRefGoogle Scholar
Füredi, Z. and Simonovits, M. (2005) Triple systems not containing a Fano configuration. Comb. Prob. Comp. 14(4) 467484, DOI: https://doi.org/10.1017/S0963548305006784. MR 2160414.CrossRefGoogle Scholar
Garbe, F., Král’, D. and Lamaison, A. (2024) Hypergraphs with minimum positive uniform Turán density. Israel J. Math. 259(2) 701726. DOI: 10.1007/s11856-023-2554-0. MR4732978.10.1007/s11856-023-2554-0CrossRefGoogle Scholar
Glebov, R., Král’, D. and Volec, J. (2016) A problem of Erdős and Sós on 3-graphs. Israel J. Math. 211(1) 349366. DOI: https://doi.org/10.1007/s11856-015-1267-4. MR 3474967.CrossRefGoogle Scholar
Katona, G., Nemetz, T. and Simonovits, M. (1964) On a problem of Turán in the theory of graphs. Mat. Lapok 15 228238, (Hungarian, with English and Russian summaries). MR 172263.Google Scholar
Keevash, P. (2011) Hypergraph Turán problems. In Surveys in Combinatorics 2011, Vol. 392 London Math. Soc. Lecture Note Ser., Cambridge: Cambridge Univ. Press, pp. 83139. MR 286673210.1017/CBO9781139004114.004CrossRefGoogle Scholar
Keevash, P. and Sudakov, B. (2005) The Turán number of the Fano plane. Combinatorica 25(5) 561574. DOI: https://doi.org/10.1007/s00493-005-0034-2. MR 2176425.CrossRefGoogle Scholar
Li, H., Lin, H., Wang, G.H. and Zhou, W.L. (2025) Hypergraphs with a quarter uniform Turán density. J. Oper. Res. Soc. China. DOI: https://doi.org/10.1007/s40305-025-00619-7.CrossRefGoogle Scholar
Piga, S., Sales, M. and Schülke, B. (2023) The codegree Turán density of tight cycles minus one edge. Comb. Prob. Comp. 32(6) 881884. DOI: https://doi.org/10.1017/S0963548323000196.CrossRefGoogle Scholar
Reiher, C. (2020) Extremal problems in uniformly dense hypergraphs. European J. Combin. 88 103117. DOI: https://doi.org/10.1016/j.ejc.2020.103117. MR 4111729,CrossRefGoogle Scholar
Reiher, C., Rödl, V., Schacht, M. (2018a) On a Turán problem in weakly quasirandom 3-uniform hypergraphs. J. Eur. Math. Soc. (JEMS) 20(5) 11391159, DOI: https://doi.org/10.4171/JEMS/784. MR 3790065.CrossRefGoogle Scholar
Reiher, C., Rödl, V. and Schacht, M. (2018b) Hypergraphs with vanishing Turán density in uniformly dense hypergraphs. J. Lond. Math. Soc. 97(1) 7797, DOI: https://doi.org/10.1112/jlms.12095. MR 3764068.CrossRefGoogle Scholar
Turán, P. (1941) Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48 436452, (Hungarian, with German summary). MR 18405.Google Scholar