We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study p-Wasserstein spaces over the branching spaces $\mathbb {R}^2$ and $[-1,1]^2$ equipped with the maximum norm metric. We show that these spaces are isometrically rigid for all $p\geq 1,$ meaning that all isometries of these spaces are induced by isometries of the underlying space via the push-forward operation. This is in contrast to the case of the Euclidean metric since with that distance the $2$-Wasserstein space over $\mathbb {R}^2$ is not rigid. Also, we highlight that the $1$-Wasserstein space is not rigid over the closed interval $[-1,1]$, while according to our result, its two-dimensional analog, the closed unit ball $[-1,1]^2$ with the more complicated geodesic structure is rigid.
We introduce the notion of echeloned spaces – an order-theoretic abstraction of metric spaces. The first step is to characterize metrizable echeloned spaces. It turns out that morphisms between metrizable echeloned spaces are uniformly continuous or have a uniformly discrete image. In particular, every automorphism of a metrizable echeloned space is uniformly continuous, and for every metric space with midpoints, the automorphisms of the induced echeloned space are precisely the dilations.
Next, we focus on finite echeloned spaces. They form a Fraïssé class, and we describe its Fraïssé-limit both as the echeloned space induced by a certain homogeneous metric space and as the result of a random construction. Building on this, we show that the class of finite ordered echeloned spaces is Ramsey. The proof of this result combines a combinatorial argument by Nešetřil and Hubička with a topological-dynamical point of view due to Kechris, Pestov and Todorčević. Finally, using the method of Katětov functors due to Kubiś and Mašulović, we prove that the full symmetric group on a countable set topologically embeds into the automorphism group of the countable universal homogeneous echeloned space.
For a space X let $\mathcal {K}(X)$ be the set of compact subsets of X ordered by inclusion. A map $\phi :\mathcal {K}(X) \to \mathcal {K}(Y)$ is a relative Tukey quotient if it carries compact covers to compact covers. When there is such a Tukey quotient write $(X,\mathcal {K}(X)) \ge _T (Y,\mathcal {K}(Y))$, and write $(X,\mathcal {K}(X)) =_T (Y,\mathcal {K}(Y))$ if $(X,\mathcal {K}(X)) \ge _T (Y,\mathcal {K}(Y))$ and vice versa.
We investigate the initial structure of pairs $(X,\mathcal {K}(X))$ under the relative Tukey order, focussing on the case of separable metrizable spaces. Connections are made to Menger spaces.
Applications are given demonstrating the diversity of free topological groups, and related free objects, over separable metrizable spaces. It is shown a topological group G has the countable chain condition if it is either $\sigma $-pseudocompact or for some separable metrizable M, we have $\mathcal {K}(M) \ge _T (G,\mathcal {K}(G))$.
The Baire algebra of a topological space X is the quotient of the algebra of all subsets of X modulo the meager sets. We show that this Boolean algebra can be endowed with a natural closure operator, resulting in a closure algebra which we denote $\mathbf {Baire}(X)$. We identify the modal logic of such algebras to be the well-known system $\mathsf {S5}$, and prove soundness and strong completeness for the cases where X is crowded and either completely metrizable and continuum-sized or locally compact Hausdorff. We also show that every extension of $\mathsf {S5}$ is the modal logic of a subalgebra of $\mathbf {Baire}(X)$, and that soundness and strong completeness also holds in the language with the universal modality.
We study the complexities of isometry and isomorphism classes of separable Banach spaces in the Polish spaces of Banach spaces, recently introduced and investigated by the authors in [14]. We obtain sharp results concerning the most classical separable Banach spaces.
We prove that the infinite-dimensional separable Hilbert space is characterized as the unique separable infinite-dimensional Banach space whose isometry class is closed, and also as the unique separable infinite-dimensional Banach space whose isomorphism class is $F_\sigma $. For $p\in \left [1,2\right )\cup \left (2,\infty \right )$, we show that the isometry classes of $L_p[0,1]$ and $\ell _p$ are $G_\delta $-complete sets and $F_{\sigma \delta }$-complete sets, respectively. Then we show that the isometry class of $c_0$ is an $F_{\sigma \delta }$-complete set.
Additionally, we compute the complexities of many other natural classes of separable Banach spaces; for instance, the class of separable $\mathcal {L}_{p,\lambda +}$-spaces, for $p,\lambda \geq 1$, is shown to be a $G_\delta $-set, the class of superreflexive spaces is shown to be an $F_{\sigma \delta }$-set, and the class of spaces with local $\Pi $-basis structure is shown to be a $\boldsymbol {\Sigma }^0_6$-set. The paper is concluded with many open problems and suggestions for a future research.
For a path-connected metric space $(X,d)$, the $n$-th homotopy group $\pi _n(X)$ inherits a natural pseudometric from the $n$-th iterated loop space with the uniform metric. This pseudometric gives $\pi _n(X)$ the structure of a topological group, and when $X$ is compact, the induced pseudometric topology is independent of the metric $d$. In this paper, we study the properties of this pseudometric and how it relates to previously studied structures on $\pi _n(X)$. Our main result is that the pseudometric topology agrees with the shape topology on $\pi _n(X)$ if $X$ is compact and $LC^{n-1}$ or if $X$ is an inverse limit of finite polyhedra with retraction bonding maps.
We provide a complete classification, up to order-isomorphism, of all possible Wadge hierarchies on zero-dimensional Polish spaces using (essentially) countable ordinals as complete invariants. We also observe that although our assignment of invariants is very simple and there are only $ \aleph _1 $-many equivalence classes, the above classification problem is quite complex from the descriptive set-theoretic point of view: in particular, there is no Borel procedure to determine whether two zero-dimensional Polish spaces have isomorphic Wadge hierarchies. All results are based on a complete and explicit description of the Wadge hierarchy on an arbitrary zero-dimensional Polish space, depending on its topological properties.
We present a systematic approach to the problem whether a topologically infinite-dimensional space can be made homogeneous in the Coifman–Weiss sense. The answer to the question is negative, as expected. Our leading representative of spaces with this property is $\mathbb {T}^\omega = \mathbb {T} \times \mathbb {T} \times \cdots $ with the natural product topology.
We present and thoroughly study natural Polish spaces of separable Banach spaces. These spaces are defined as spaces of norms, respectively pseudonorms, on the countable infinite-dimensional rational vector space. We provide an exhaustive comparison of these spaces with admissible topologies recently introduced by Godefroy and Saint-Raymond and show that Borel complexities differ little with respect to these two topological approaches.
We investigate generic properties in these spaces and compare them with those in admissible topologies, confirming the suspicion of Godefroy and Saint-Raymond that they depend on the choice of the admissible topology.
Any Lipschitz map $f : M \to N$ between two pointed metric spaces may be extended in a unique way to a bounded linear operator $\widehat {f} : \mathcal {F}(M) \to \mathcal {F}(N)$ between their corresponding Lipschitz-free spaces. In this paper, we give a necessary and sufficient condition for $\widehat {f}$ to be compact in terms of metric conditions on $f$. This extends a result by A. Jiménez-Vargas and M. Villegas-Vallecillos in the case of non-separable and unbounded metric spaces. After studying the behaviour of weakly convergent sequences made of finitely supported elements in Lipschitz-free spaces, we also deduce that $\widehat {f}$ is compact if and only if it is weakly compact.
We prove a general principle satisfied by weakly precompact sets of Lipschitz-free spaces. By this principle, certain infinite dimensional phenomena in Lipschitz-free spaces over general metric spaces may be reduced to the same phenomena in free spaces over their compact subsets. As easy consequences we derive several new and some known results. The main new results are: $\mathcal {F}(X)$ is weakly sequentially complete for every superreflexive Banach space $X$, and $\mathcal {F}(M)$ has the Schur property and the approximation property for every scattered complete metric space $M$.
We introduce some notions of conditional mean dimension for a factor map between two topological dynamical systems and discuss their properties. With the help of these notions, we obtain an inequality to estimate the mean dimension of an extension system. The conditional mean dimension for G-extensions is computed. We also exhibit some applications in dynamical embedding problems.
We study a strengthening of the notion of a perfectly meager set. We say that a subset A of a perfect Polish space X is countably perfectly meager in X, if for every sequence of perfect subsets
$\{P_n: n \in \mathbb N\}$
of X, there exists an
$F_\sigma $
-set F in X such that
$A \subseteq F$
and
$F\cap P_n$
is meager in
$P_n$
for each n. We give various characterizations and examples of countably perfectly meager sets. We prove that not every universally meager set is countably perfectly meager correcting an earlier result of Bartoszyński.
We prove that the restriction of a given orthogonal-complete metric space to the closure of the orbit induced by the origin point with respect to an orthogonal-preserving and orthogonal-continuous map is a complete metric space. Then we show that many existence results on fixed points in orthogonal-complete metric spaces can be proved by using the corresponding existence results in complete metric spaces.
Let
$M(A,n)$
be the Moore space of type
$(A,n)$
for an Abelian group A and
$n\ge 2$
. We show that the loop space
$\Omega (M(A,n))$
is homotopy nilpotent if and only if A is a subgroup of the additive group
$\mathbb {Q}$
of the field of rationals. Homotopy nilpotency of loop spaces
$\Omega (M(A,1))$
is discussed as well.
In this note, we show that in a complete $\operatorname {\mathrm {CAT}}(0)$ space pointwise convergence of proximal mappings under a certain normalization condition implies Mosco convergence.
We prove that if the set of unordered pairs of real numbers is coloured by finitely many colours, there is a set of reals homeomorphic to the rationals whose pairs have at most two colours. Our proof uses large cardinals and verifies a conjecture of Galvin from the 1970s. We extend this result to an essentially optimal class of topological spaces in place of the reals.
Consider a definably complete uniformly locally o-minimal expansion of the second kind of a densely linearly ordered abelian group. Let $f:X \rightarrow R^n$ be a definable map, where X is a definable set and R is the universe of the structure. We demonstrate the inequality $\dim (f(X)) \leq \dim (X)$ in this paper. As a corollary, we get that the set of the points at which f is discontinuous is of dimension smaller than $\dim (X)$. We also show that the structure is definably Baire in the course of the proof of the inequality.
Using the category of metric spaces as a template, we develop a metric analogue of the categorical semantics of classical/intuitionistic logic, and show that the natural notion of predicate in this “continuous semantics” is equivalent to the a priori separate notion of predicate in continuous logic, a logic which is independently well-studied by model theorists and which finds various applications. We show this equivalence by exhibiting the real interval
$[0,1]$
in the category of metric spaces as a “continuous subobject classifier” giving a correspondence not only between the two notions of predicate, but also between the natural notion of quantification in the continuous semantics and the existing notion of quantification in continuous logic.
Along the way, we formulate what it means for a given category to behave like the category of metric spaces, and afterwards show that any such category supports the aforementioned continuous semantics. As an application, we show that categories of presheaves of metric spaces are examples of such, and in fact even possess continuous subobject classifiers.
We establish that the existence of a winning strategy in certain topological games, closely related to a strong game of Choquet, played in a topological space $X$ and its hyperspace $K(X)$ of all nonempty compact subsets of $X$ equipped with the Vietoris topology, is equivalent for one of the players. For a separable metrizable space $X$, we identify a game-theoretic condition equivalent to $K(X)$ being hereditarily Baire. It implies quite easily a recent result of Gartside, Medini and Zdomskyy that characterizes hereditary Baire property of hyperspaces $K(X)$ over separable metrizable spaces $X$ via the Menger property of the remainder of a compactification of $X$. Subsequently, we use topological games to study hereditary Baire property in spaces of probability measures and in hyperspaces over filters on natural numbers. To this end, we introduce a notion of strong $P$-filter ${\mathcal{F}}$ and prove that it is equivalent to $K({\mathcal{F}})$ being hereditarily Baire. We also show that if $X$ is separable metrizable and $K(X)$ is hereditarily Baire, then the space $P_{r}(X)$ of Borel probability Radon measures on $X$ is hereditarily Baire too. It follows that there exists (in ZFC) a separable metrizable space $X$, which is not completely metrizable with $P_{r}(X)$ hereditarily Baire. As far as we know, this is the first example of this kind.