We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Many continua that admit a transitive homeomorphism may be found in the literature. The circle is probably the simplest non-degenerate continuum that admits such a homeomorphism. However, most of the known examples of such continua have a complicated topological structure. For example, they are indecomposable (such as the pseudo-arc or the Knaster bucket-handle continuum), or they are not indecomposable but have some other complicated topological structure, such as a dense set of ramification points (such as the Sierpiński carpet) or a dense set of end-points (such as the Lelek fan). In this paper, we continue our mission of finding continua with simpler topological structures that admit a transitive homeomorphism. We construct a transitive homeomorphism on the Cantor fan. In our approach, we use two different techniques, each of them giving two constructions of a transitive homeomorphism on the Cantor fan: one technique using quotient spaces of products of compact metric spaces and Cantor sets, and one using Mahavier products of closed relations on compact metric spaces. We also demonstrate how our technique using Mahavier products of closed relations may be used to construct a transitive function f on a Cantor fan X such that $\varprojlim (X,f)$ is a Lelek fan.
We study the problem of extending an order-preserving real-valued Lipschitz map defined on a subset of a partially ordered metric space without increasing its Lipschitz constant and preserving its monotonicity. We show that a certain type of relation between the metric and order of the space, which we call radiality, is necessary and sufficient for such an extension to exist. Radiality is automatically satisfied by the equality relation, so the classical McShane–Whitney extension theorem is a special case of our main characterization result. As applications, we obtain a similar generalization of McShane’s uniformly continuous extension theorem, along with some functional representation results for radial partial orders.
We introduce a generalization of sequential compactness using barriers on $\omega $ extending naturally the notion introduced in [W. Kubiś and P. Szeptycki, On a topological Ramsey theorem, Canad. Math. Bull., 66 (2023), 156–165]. We improve results from [C. Corral and O. Guzmán and C. López-Callejas, High dimensional sequential compactness, Fund. Math.] by building spaces that are ${\mathcal {B}}$-sequentially compact but not ${\mathcal {C}}$-sequentially compact when the barriers ${\mathcal {B}}$ and ${\mathcal {C}}$ satisfy certain rank assumption which turns out to be equivalent to a Katětov-order assumption. Such examples are constructed under the assumption ${\mathfrak {b}} ={\mathfrak {c}}$. We also exhibit some classes of spaces that are ${\mathcal {B}}$-sequentially compact for every barrier ${\mathcal {B}}$, including some classical classes of compact spaces from functional analysis, and as a byproduct, we obtain some results on angelic spaces. Finally, we introduce and compute some cardinal invariants naturally associated to barriers.
We introduce the notions of returns and well-aligned sets for closed relations on compact metric spaces and then use them to obtain non-trivial sufficient conditions for such a relation to have non-zero entropy. In addition, we give a characterization of finite relations with non-zero entropy in terms of Li–Yorke and DC2 chaos.
If X is a topological space and Y is any set, then we call a family $\mathcal {F}$ of maps from X to Y nowhere constant if for every non-empty open set U in X there is $f \in \mathcal {F}$ with $|f[U]|> 1$, i.e., f is not constant on U. We prove the following result that improves several earlier results in the literature.
If X is a topological space for which $C(X)$, the family of all continuous maps of X to $\mathbb {R}$, is nowhere constant and X has a $\pi $-base consisting of connected sets then X is $\mathfrak {c}$-resolvable.
We study monotone operators in reflexive Banach spaces that are invariant with respect to a group of suitable isometric isomorphisms, and we show that they always admit a maximal extension which preserves the same invariance. A similar result applies to Lipschitz maps in Hilbert spaces, thus providing an invariant version of Kirszbraun–Valentine extension theorem. We then provide a relevant application to the case of monotone operators in $L^{p}$-spaces of random variables which are invariant with respect to measure-preserving isomorphisms, proving that they always admit maximal dissipative extensions which are still invariant by measure-preserving isomorphisms. We also show that such operators are law invariant, a much stronger property which is also inherited by their resolvents, the Moreau–Yosida approximations, and the associated semigroup of contractions. These results combine explicit representation formulae for the maximal extension of a monotone operator based on self-dual Lagrangians and a refined study of measure-preserving maps in standard Borel spaces endowed with a nonatomic measure, with applications to the approximation of arbitrary couplings between measures by sequences of maps.
An old question of Arhangel’skii asks if the Menger property of a Tychonoff space X is preserved by homeomorphisms of the space $C_p(X)$ of continuous real-valued functions on X endowed with the pointwise topology. We provide affirmative answer in the case of linear homeomorphisms. To this end, we develop a method of studying invariants of linear homeomorphisms of function spaces $C_p(X)$ by looking at the way X is positioned in its (Čech–Stone) compactification.
For a path-connected metric space $(X,d)$, the $n$-th homotopy group $\pi _n(X)$ inherits a natural pseudometric from the $n$-th iterated loop space with the uniform metric. This pseudometric gives $\pi _n(X)$ the structure of a topological group, and when $X$ is compact, the induced pseudometric topology is independent of the metric $d$. In this paper, we study the properties of this pseudometric and how it relates to previously studied structures on $\pi _n(X)$. Our main result is that the pseudometric topology agrees with the shape topology on $\pi _n(X)$ if $X$ is compact and $LC^{n-1}$ or if $X$ is an inverse limit of finite polyhedra with retraction bonding maps.
The main goal of this paper is to construct universal spaces for asymptotic dimension by generalizing to the coarse context an approach to constructing universal spaces for covering dimension using a factorization result due to Mardesic.
Let $\alpha < \omega _1$ be a prime component, and let $X$ and $Y$ be metric spaces. In [8], it was shown that if $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic, then the scattered heights $\kappa (X)$ and $\kappa (Y)$ of $X$ and $Y$ satisfy $\kappa (X) \leq \alpha $ if and only if $\kappa (Y) \leq \alpha $. We will prove that this also holds if $C_p^*(X)$ and $C_p^*(Y)$ are linearly homeomorphic and that these results do not hold for arbitrary Tychonov spaces. We will also prove that if $C_p^*(X)$ and $C_p^*(Y)$ are linearly homeomorphic, then $\kappa (X) < \alpha $ if and only if $\kappa (Y) < \alpha $, which was shown in [9] for $\alpha = \omega $. This last statement is not always true for linearly homeomorphic $C_p(X)$ and $C_p(Y)$. We will show that if $\alpha = \omega ^{\mu }$ where $\mu < \omega _1$ is a successor ordinal, it is true, but for all other prime components, this is not the case. Finally, we will prove that if $C_p^*(X)$ and $C_p^*(Y)$ are linearly homeomorphic, then $X$ is scattered if and only if $Y$ is scattered. This result does not directly follow from the above results. We will clarify why the results for linearly homeomorphic spaces $C_p^*(X)$ and $C_p^*(Y)$ do require a different and more complex approach than the one that was used for linearly homeomorphic spaces $C_p(X)$ and $C_p(Y)$.
We discuss the question of extending homeomorphisms between closed subsets of the Cantor cube $D^{\tau }$. It is established that any homeomorphism between two closed negligible subsets of $D^{\tau }$ can be extended to an autohomeomorphism of $D^{\tau }$.
Erdős proved that every real number is the sum of two Liouville numbers. A set W of complex numbers is said to have the Erdős property if every real number is the sum of two members of W. Mahler divided the set of all transcendental numbers into three disjoint classes S, T and U such that, in particular, any two complex numbers which are algebraically dependent lie in the same class. The set of Liouville numbers is a proper subset of the set U and has Lebesgue measure zero. It is proved here, using a theorem of Weil on locally compact groups, that if $m\in [0,\infty )$, then there exist $2^{\mathfrak {c}}$ dense subsets W of S each of Lebesgue measure m such that W has the Erdős property and no two of these W are homeomorphic. It is also proved that there are $2^{\mathfrak {c}}$ dense subsets W of S each of full Lebesgue measure, which have the Erdős property. Finally, it is proved that there are $2^{\mathfrak {c}}$ dense subsets W of S such that every complex number is the sum of two members of W and such that no two of these W are homeomorphic.
We prove that any continuous function can be locally approximated at a fixed point
$x_{0}$
by an uncountable family resistant to disruptions by the family of continuous functions for which
$x_{0}$
is a fixed point. In that context, we also consider the property of quasicontinuity.
We consider a real-valued function f defined on the set of infinite branches X of a countably branching pruned tree T. The function f is said to be a limsup function if there is a function
$u \colon T \to \mathbb {R}$
such that
$f(x) = \limsup _{t \to \infty } u(x_{0},\dots ,x_{t})$
for each
$x \in X$
. We study a game characterization of limsup functions, as well as a novel game characterization of functions of Baire class 1.
A thin set is defined to be an uncountable dense zero-dimensional subset of measure zero and Hausdorff measure zero of an Euclidean space. A fat set is defined to be an uncountable dense path-connected subset of an Euclidean space which has full measure, that is, its complement has measure zero. While there are well-known pathological maps of a set of measure zero, such as the Cantor set, onto an interval, we show that the standard addition on
$\mathbb {R}$
maps a thin set onto a fat set; in fact the fat set is all of
$\mathbb {R}$
. Our argument depends on the theorem of Paul Erdős that every real number is a sum of two Liouville numbers. Our thin set is the set
$\mathcal {L}^{2}$
, where
$\mathcal {L}$
is the set of all Liouville numbers, and the fat set is
$\mathbb {R}$
itself. Finally, it is shown that
$\mathcal {L}$
and
$\mathcal {L}^{2}$
are both homeomorphic to
$\mathbb {P}$
, the space of all irrational numbers.
In this work we present some new contributions towards two different directions in the study of modal logic. First we employ tense logics to provide a temporal interpretation of intuitionistic quantifiers as “always in the future” and “sometime in the past.” This is achieved by modifying the Gödel translation and resolves an asymmetry between the standard interpretation of intuitionistic quantifiers.
Then we generalize the classic Gelfand–Naimark–Stone duality between compact Hausdorff spaces and uniformly complete bounded archimedean
$\ell $
-algebras to a duality encompassing compact Hausdorff spaces with continuous relations. This leads to the notion of modal operators on bounded archimedean
$\ell $
-algebras and in particular on rings of continuous real-valued functions on compact Hausdorff spaces. This new duality is also a generalization of the classic Jónsson-Tarski duality in modal logic.
We generalize a classical extension result by Seeley in the context of Bastiani’s differential calculus to infinite dimensions. The construction follows Seeley’s original approach, but is significantly more involved as not only
$C^k$
-maps (for ) on (subsets of) half spaces are extended, but also continuous extensions of their differentials to some given piece of boundary of the domains under consideration. A further feature of the generalization is that we construct families of extension operators (instead of only one single extension operator) that fulfill certain compatibility (and continuity) conditions. Various applications are discussed as well.
It is a classic result in modal logic, often referred to as Jónsson-Tarski duality, that the category of modal algebras is dually equivalent to the category of descriptive frames. The latter are Kripke frames equipped with a Stone topology such that the binary relation is continuous. This duality generalizes the celebrated Stone duality for boolean algebras. Our goal is to generalize descriptive frames so that the topology is an arbitrary compact Hausdorff topology. For this, instead of working with the boolean algebra of clopen subsets of a Stone space, we work with the ring of continuous real-valued functions on a compact Hausdorff space. The main novelty is to define a modal operator on such a ring utilizing a continuous relation on a compact Hausdorff space.
Our starting point is the well-known Gelfand duality between the category
${\sf KHaus}$
of compact Hausdorff spaces and the category
$\boldsymbol {\mathit {uba}\ell }$
of uniformly complete bounded archimedean
$\ell $
-algebras. We endow a bounded archimedean
$\ell $
-algebra with a modal operator, which results in the category
$\boldsymbol {\mathit {mba}\ell }$
of modal bounded archimedean
$\ell $
-algebras. Our main result establishes a dual adjunction between
$\boldsymbol {\mathit {mba}\ell }$
and the category
${\sf KHF}$
of what we call compact Hausdorff frames; that is, Kripke frames equipped with a compact Hausdorff topology such that the binary relation is continuous. This dual adjunction restricts to a dual equivalence between
${\sf KHF}$
and the reflective subcategory
$\boldsymbol {\mathit {muba}\ell }$
of
$\boldsymbol {\mathit {mba}\ell }$
consisting of uniformly complete objects of
$\boldsymbol {\mathit {mba}\ell }$
. This generalizes both Gelfand duality and Jónsson-Tarski duality.
For a continuous function
$f:[0,1] \to [0,1]$
we define a splitting sequence admitted by f and show that the inverse limit of f is an arc if and only if f does not admit a splitting sequence.
The homotopy theory of gauge groups has received considerable attention in recent decades. In this work, we study the homotopy theory of gauge groups over some high-dimensional manifolds. To be more specific, we study gauge groups of bundles over (n − 1)-connected closed 2n-manifolds, the classification of which was determined by Wall and Freedman in the combinatorial category. We also investigate the gauge groups of the total manifolds of sphere bundles based on the classical work of James and Whitehead. Furthermore, other types of 2n-manifolds are also considered. In all the cases, we show various homotopy decompositions of gauge groups. The methods are combinations of manifold topology and various techniques in homotopy theory.