We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The distinction of the semantic spaces of elements and types is common practice in practically all type systems. A few type systems, including some early ones, have been proposed whose semantic space has functions only, i.e., depending on the context functions may play element roles as well as type roles. All of these systems are either lacking expressive power, in particular, polymorphism, or they violate uniqueness of types. This work presents for the first time a function-based type system in which typing is a relation between functions and which is using an ordering of functions to introduce bounded polymorphism. The ordering is based on an infinite set of top objects, itself strictly linearly ordered, each of which characterizes a certain function space. These top objects are predicative in the sense that a function using some top object cannot be smaller than this object. The interpretation of proposition as types and elements as proofs remains valid and is extended by viewing the ordering between types as logical implication. The proposed system can be shown to satisfy confluence and subject reduction. Furthermore one can show that the ordering is a partial order, every set of expressions has a maximal element, and there is a (unique) minimal, logically strongest, type among all types of an element. The latter result implies an alternative notion of uniqueness of types. Strong normalisation is the deepest property and its proof is based on a well-founded relation defined over a subsystem of expressions without eliminators. Semantic abstraction of the objects involved in typing, i.e., to use functions in element as well as type roles in a relational setting, is the major contribution of function-based type systems. This work shows that dependent products are not necessary for defining type systems with bounded polymorphism, rather it presents a consistent system with bounded polymorphism and minimal types where typing is a relation between partially ordered functions.
Unital quantales constitute a significant subclass within quantale theory, which play a crucial role in the theoretical framework of quantale research. The main purpose of this article is to investigate the construction of unital quantales from a given quantale. Using Q-algebras, we prove that every quantale is embedded into a unital quantale, which generalizes the work of Paseka and Kruml for the construction of unital quantales. Based on which, we further show that every quantale can be transformed into a unitally non-distributive quantale, which expands the foundational work of Guriérrez García and Höhle for unitally non-distributive quantales. Finally, we provide a variety of methods for constructing unital quantales from some special quantales.
The group of order-preserving automorphisms of a finitely generated Archimedean ordered group of rank $2$ is either infinite cyclic or trivial according as the ratio in $\mathbb {R}$ of the generators of the subgroup is or is not quadratic over $\mathbb {Q}.$ In the case of an Archimedean ordered group of rank $2$ that is not finitely generated, the group of order-preserving automorphisms is free abelian. Criteria determining the rank of this free abelian group are established.
We show that for $\mathrm {C}^*$-algebras with the global Glimm property, the rank of every operator can be realized as the rank of a soft operator, that is, an element whose hereditary sub-$\mathrm {C}^*$-algebra has no nonzero, unital quotients. This implies that the radius of comparison of such a $\mathrm {C}^*$-algebra is determined by the soft part of its Cuntz semigroup.
Under a mild additional assumption, we show that every Cuntz class dominates a (unique) largest soft Cuntz class. This defines a retract from the Cuntz semigroup onto its soft part, and it follows that the covering dimensions of these semigroups differ by at most $1$.
We study the problem of extending an order-preserving real-valued Lipschitz map defined on a subset of a partially ordered metric space without increasing its Lipschitz constant and preserving its monotonicity. We show that a certain type of relation between the metric and order of the space, which we call radiality, is necessary and sufficient for such an extension to exist. Radiality is automatically satisfied by the equality relation, so the classical McShane–Whitney extension theorem is a special case of our main characterization result. As applications, we obtain a similar generalization of McShane’s uniformly continuous extension theorem, along with some functional representation results for radial partial orders.
We prove that the opposite of the category of coalgebras for the Vietoris endofunctor on the category of compact Hausdorff spaces is monadic over $\mathsf {Set}$. We deliver an analogous result for the upper, lower, and convex Vietoris endofunctors acting on the category of stably compact spaces. We provide axiomatizations of the associated (infinitary) varieties. This can be seen as a version of Jónsson–Tarski duality for modal algebras beyond the zero-dimensional setting.
We study ordered groups in the context of both algebra and computability. Ordered groups are groups that admit a linear order that is compatible with the group operation. We explore some properties of ordered groups and discuss some related topics. We prove results about the semidirect product in relation to orderability and computability. In particular, we give a criteria for when a semidirect product of orderable groups is orderable and for when a semidirect product is computably categorical. We also give an example of a semidirect product that has the halting set coded into its multiplication structure but it is possible to construct a computable presentation of this semidirect product.
We examine a family of orderable groups that admit exactly countably many orders and show that their space of orders has arbitrary finite Cantor–Bendixson rank. Furthermore, this family of groups is also shown to be computably categorical, which in particular will allow us to conclude that any computable presentation of the groups does not admit any noncomputable orders. Lastly, we construct an example of an orderable computable group with no computable Archimedean orders but at least one computable non-Archimedean order.
A natural operation on numerical semigroups is taking a quotient by a positive integer. If $\mathcal {S}$ is a quotient of a numerical semigroup with k generators, we call $\mathcal {S}$ a k-quotient. We give a necessary condition for a given numerical semigroup $\mathcal {S}$ to be a k-quotient and present, for each $k \ge 3$, the first known family of numerical semigroups that cannot be written as a k-quotient. We also examine the probability that a randomly selected numerical semigroup with k generators is a k-quotient.
Residual torsion-free nilpotence has proved to be an important property for knot groups with applications to bi-orderability and ribbon concordance. Mayland proposed a strategy to show that a two-bridge knot group has a commutator subgroup which is a union of an ascending chain of para-free groups. This paper proves Mayland’s assertion and expands the result to the subgroups of two-bridge link groups that correspond to the kernels of maps to $\mathbb{Z}$. We call these kernels the Alexander subgroups of the links. As a result, we show the bi-orderability of a large family of two-bridge link groups. This proof makes use of a modified version of a graph-theoretic construction of Hirasawa and Murasugi in order to understand the structure of the Alexander subgroup for a two-bridge link group.
The classical Gelfand–Naimark theorems provide important insight into the structure of general and of commutative $C^*$-algebras. It is shown that these can be generalized to certain ordered $^*$-algebras. More precisely, for $\sigma $-bounded closed ordered $^*$-algebras, a faithful representation as operators is constructed. Similarly, for commutative such algebras, a faithful representation as complex-valued functions is constructed if an additional necessary regularity condition is fulfilled. These results generalize the Gelfand–Naimark representation theorems to classes of $^*$-algebras larger than $C^*$-algebras, and which especially contain $^*$-algebras of unbounded operators. The key to these representation theorems is a new result for Archimedean ordered vector spaces V: If V is $\sigma $-bounded, then the order of V is induced by the extremal positive linear functionals on V.
An algebraically expandable (AE) class is a class of algebraic structures axiomatizable by sentences of the form
$\forall \exists ! \mathop{\boldsymbol {\bigwedge }}\limits p = q$
. For a logic L algebraized by a quasivariety
$\mathcal {Q}$
we show that the AE-subclasses of
$\mathcal {Q}$
correspond to certain natural expansions of L, which we call algebraic expansions. These turn out to be a special case of the expansions by implicit connectives studied by X. Caicedo. We proceed to characterize all the AE-subclasses of abelian
$\ell $
-groups and perfect MV-algebras, thus fully describing the algebraic expansions of their associated logics.
Every discrete definable subset of a closed asymptotic couple with ordered scalar field ${\boldsymbol {k}}$ is shown to be contained in a finite-dimensional ${\boldsymbol {k}}$-linear subspace of that couple. It follows that the differential-valued field $\mathbb {T}$ of transseries induces more structure on its value group than what is definable in its asymptotic couple equipped with its scalar multiplication by real numbers, where this asymptotic couple is construed as a two-sorted structure with $\mathbb {R}$ as the underlying set for the second sort.
We examine a semigroup analogue of the Kumjian–Renault representation of C*-algebras with Cartan subalgebras on twisted groupoids. Specifically, we represent semigroups with distinguished normal subsemigroups as ‘slice-sections’ of groupoid bundles.
A number of spectrum constructions have been devised to extract topological spaces from algebraic data. Prominent examples include the Zariski spectrum of a commutative ring, the Stone spectrum of a bounded distributive lattice, the Gelfand spectrum of a commutative unital C*-algebra and the Hofmann–Lawson spectrum of a continuous frame.
Inspired by the examples above, we define a spectrum for localic semirings. We use arguments in the symmetric monoidal category of suplattices to prove that, under conditions satisfied by the aforementioned examples, the spectrum can be constructed as the frame of overt weakly closed radical ideals and that it reduces to the usual constructions in those cases. Our proofs are constructive.
Our approach actually gives ‘quantalic’ spectrum from which the more familiar localic spectrum can then be derived. For a discrete ring this yields the quantale of ideals and in general should contain additional ‘differential’ information about the semiring.
Necessary and sufficient conditions are presented for the (first-order) theory of a universal class of algebraic structures (algebras) to have a model completion, extending a characterization provided by Wheeler. For varieties of algebras that have equationally definable principal congruences and the compact intersection property, these conditions yield a more elegant characterization obtained (in a slightly more restricted setting) by Ghilardi and Zawadowski. Moreover, it is shown that under certain further assumptions on congruence lattices, the existence of a model completion implies that the variety has equationally definable principal congruences. This result is then used to provide necessary and sufficient conditions for the existence of a model completion for theories of Hamiltonian varieties of pointed residuated lattices, a broad family of varieties that includes lattice-ordered abelian groups and MV-algebras. Notably, if the theory of a Hamiltonian variety of pointed residuated lattices has a model completion, it must have equationally definable principal congruences. In particular, the theories of lattice-ordered abelian groups and MV-algebras do not have a model completion, as first proved by Glass and Pierce, and Lacava, respectively. Finally, it is shown that certain varieties of pointed residuated lattices generated by their linearly ordered members, including lattice-ordered abelian groups and MV-algebras, can be extended with a binary operation to obtain theories that do have a model completion.
In this work we present some new contributions towards two different directions in the study of modal logic. First we employ tense logics to provide a temporal interpretation of intuitionistic quantifiers as “always in the future” and “sometime in the past.” This is achieved by modifying the Gödel translation and resolves an asymmetry between the standard interpretation of intuitionistic quantifiers.
Then we generalize the classic Gelfand–Naimark–Stone duality between compact Hausdorff spaces and uniformly complete bounded archimedean
$\ell $
-algebras to a duality encompassing compact Hausdorff spaces with continuous relations. This leads to the notion of modal operators on bounded archimedean
$\ell $
-algebras and in particular on rings of continuous real-valued functions on compact Hausdorff spaces. This new duality is also a generalization of the classic Jónsson-Tarski duality in modal logic.
We prove that the category of Nachbin’s compact ordered spaces and order-preserving continuous maps between them is dually equivalent to a variety of algebras, with operations of at most countable arity. Furthermore, we observe that the countable bound on the arity is the best possible: the category of compact ordered spaces is not dually equivalent to any variety of finitary algebras. Indeed, the following stronger results hold: the category of compact ordered spaces is not dually equivalent to (i) any finitely accessible category, (ii) any first-order definable class of structures, and (iii) any class of finitary algebras closed under products and subalgebras. An explicit equational axiomatisation of the dual of the category of compact ordered spaces is obtained; in fact, we provide a finite one, meaning that our description uses only finitely many function symbols and finitely many equational axioms. In preparation for the latter result, we establish a generalisation of a celebrated theorem by Mundici: our result—whose proof is independent of Mundici’s theorem—asserts that the category of unital commutative distributive lattice-ordered monoids is equivalent to the category of what we call MV-monoidal algebras.
We prove that a minimal second countable ample groupoid has dynamical comparison if and only if its type semigroup is almost unperforated. Moreover, we investigate to what extent a not necessarily minimal almost finite groupoid has an almost unperforated type semigroup. Finally, we build a bridge between coarse geometry and topological dynamics by characterizing almost finiteness of the coarse groupoid in terms of a new coarsely invariant property for metric spaces, which might be of independent interest in coarse geometry. As a consequence, we are able to construct new examples of almost finite principal groupoids lacking other desirable properties, such as amenability or even a-T-menability. This behaviour is in stark contrast to the case of principal transformation groupoids associated to group actions.
It is a classic result in modal logic, often referred to as Jónsson-Tarski duality, that the category of modal algebras is dually equivalent to the category of descriptive frames. The latter are Kripke frames equipped with a Stone topology such that the binary relation is continuous. This duality generalizes the celebrated Stone duality for boolean algebras. Our goal is to generalize descriptive frames so that the topology is an arbitrary compact Hausdorff topology. For this, instead of working with the boolean algebra of clopen subsets of a Stone space, we work with the ring of continuous real-valued functions on a compact Hausdorff space. The main novelty is to define a modal operator on such a ring utilizing a continuous relation on a compact Hausdorff space.
Our starting point is the well-known Gelfand duality between the category
${\sf KHaus}$
of compact Hausdorff spaces and the category
$\boldsymbol {\mathit {uba}\ell }$
of uniformly complete bounded archimedean
$\ell $
-algebras. We endow a bounded archimedean
$\ell $
-algebra with a modal operator, which results in the category
$\boldsymbol {\mathit {mba}\ell }$
of modal bounded archimedean
$\ell $
-algebras. Our main result establishes a dual adjunction between
$\boldsymbol {\mathit {mba}\ell }$
and the category
${\sf KHF}$
of what we call compact Hausdorff frames; that is, Kripke frames equipped with a compact Hausdorff topology such that the binary relation is continuous. This dual adjunction restricts to a dual equivalence between
${\sf KHF}$
and the reflective subcategory
$\boldsymbol {\mathit {muba}\ell }$
of
$\boldsymbol {\mathit {mba}\ell }$
consisting of uniformly complete objects of
$\boldsymbol {\mathit {mba}\ell }$
. This generalizes both Gelfand duality and Jónsson-Tarski duality.
In 2001, the algebraico-tree-theoretic simplicity hierarchical structure of J. H. Conway’s ordered field
${\mathbf {No}}$
of surreal numbers was brought to the fore by the first author and employed to provide necessary and sufficient conditions for an ordered field (ordered
$K$
-vector space) to be isomorphic to an initial subfield (
$K$
-subspace) of
${\mathbf {No}}$
, i.e. a subfield (
$K$
-subspace) of
${\mathbf {No}}$
that is an initial subtree of
${\mathbf {No}}$
. In this sequel, analogous results are established for ordered exponential fields, making use of a slight generalization of Schmeling’s conception of a transseries field. It is further shown that a wide range of ordered exponential fields are isomorphic to initial exponential subfields of
$({\mathbf {No}}, \exp )$
. These include all models of
$T({\mathbb R}_W, e^x)$
, where
${\mathbb R}_W$
is the reals expanded by a convergent Weierstrass system W. Of these, those we call trigonometric-exponential fields are given particular attention. It is shown that the exponential functions on the initial trigonometric-exponential subfields of
${\mathbf {No}}$
, which includes
${\mathbf {No}}$
itself, extend to canonical exponential functions on their surcomplex counterparts. The image of the canonical map of the ordered exponential field
${\mathbb T}^{LE}$
of logarithmic-exponential transseries into
${\mathbf {No}}$
is shown to be initial, as are the ordered exponential fields
${\mathbb R}((\omega ))^{EL}$
and
${\mathbb R}\langle \langle \omega \rangle \rangle $
.