[1]Angeleri-Hügel, L. and Coelho, F.U., *Infinitely generated tilting modules of finite projective dimension*, Forum Math. 13 (2001), 239–250.

[2]Asashiba, H., *A covering technique for derived equivalence*, J. Algebra 191 (1997), 382–415.

[3]Auslander, M. and Reiten, I., *Applications of contravariantly finite subcategories*, Adv. Math. 86 (1991), 111–152.

[4]Bazzoni, S., *A characterization of **n*-cotilting and *n*-tilting modules, J. Algebra 273(1) (2004), 359–372.

[5]Bongartz, K., “*Tilted algebras*”, in Representations of Algebras, Lecture Notes in Mathematics **903**, Springer-Verlag, Berlin/Heidelberg/New York, 1981, 26–38.

[6]Brenner, S. and Butler, M. C. R., Generalizations of the Bernstein–Gelfand–Ponomarev Reflection Functors, Lecture Notes in Mathematics **832**, 1980, 103–170.

[7]Chen, Q., *Derived equivalence of repetitive algebras*, Adv. Math. (Chinese) 37(2) (2008), 189–196.

[8]Chen, X., *The singularity category of an algebra with radical square zero*, Doc. Math. 16 (2011), 921–936.

[9]Chen, X. and Wei, J., *Wakamatsu’s equivalence revisited*, arXiv:1610.09649.

[10]Cline, E., Parshall, B. and Scott, L., *Derived categories and Morita theory*, J. Algebra 104 (1986), 397–409.

[11]Colby, R. and Fuller, K. R., *Tilting and torsion theory counter equivalences*, Comm. Algebra 23(13) (1995), 4833–4849.

[12]Colby, R. and Fuller, K. R., *Tilting, cotilting and serially tilted rings*, Comm. Algebra 25(10) (1997), 3225–3237.

[13]Colpi, R., D’Este, G. and Tonolo, A., *Quasi-tilting modules and counter equivalences*, J. Algebra 191 (1997), 461–494.

[14]Colpi, R. and Trlifaj, J., *Tilting modules and tilting torsion theories*, J. Algebra 178 (1995), 614–634.

[15]Enochs, E. E. and Jenda, O. M. G., Relative Homological Algebra, De Gruyter Expositions in Mathematics **30**, Walter De Gruyter, Berlin/New York, 2000.

[16]Göbel, R. and Trlifaj, J., Approximations and Endomorphism Algebras of Modules, De Gruyter Expositions in Mathematics **41**, Walter de Gruyter, Berlin/New York, 2012.

[17]Green, E. L., Reiten, I. and Solberg, Ø., *Dualities on Generalized Koszul Algebras*, Mem. Amer. Math. Soc. 159 (2002), xvi+67 pp.

[18]Happel, D., Triangulated Categories in the Representation Theory of Finite Dimension Algebras, London Mathematical Society Lecture Notes Series **119**, Cambridge University Press, Cambridge, 1988.

[19]Happel, D. and Ringel, C. M., *Tilted algebras*, Trans. Amer. Math. Soc. 174 (1982), 399–443.

[20]Hughes, D. and Waschbüsch, J., *Trivial extensions of tilted algebras*, Proc. Lond. Math. Soc. 46 (1983), 347–364.

[21]Keller, B., *Deriving DG categories*, Ann. Sci. Éc. Norm. Supér. 27 (1994), 63–102.

[22]Mantese, F. and Reiten, I., *Wakamatsu Tilting modules*, J. Algebra 278 (2004), 532–552.

[23]Miyashita, Y., *Tilting modules of finite projective dimension*, Math. Z. 193 (1986), 113–146.

[24]Rickard, J., *Morita theory for derived categories*, J. Lond. Math. Soc. 39 (1989), 436–456.

[25]Wakamatsu, T., *On modules with trivial self-extensions*, J. Algebra 114 (1988), 106–114.

[26]Wakamatsu, T., *Stable equivalence for self-injective algebras and a generalization of tilting modules*, J. Algebra 134 (1990), 298–325.

[27]Wakamatsu, T., *On constructing stable equivalent functor*, J. Algebra 148 (1992), 277–288.

[28]Yamaura, K., *Realizing stable categories as derived categories*, Adv. Math. 248 (2013), 784–819.

[29]Yoshino, Y., “*Modules of G-dimension zero over local rings with the cube of maximal ideal being zero*”, in Commutative Algebra, Singularities and Computer Algebra, NATO Sci. Ser. I Math. Phys. Chem. **115**, Kluwer, Dordrecht, 2003, 255–273.