We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Our work is motivated by obtaining solutions to the quantum reflection equation (qRE) by categorical methods. To start, given a braided monoidal category ${\mathcal {C}}$ and ${\mathcal {C}}$-module category ${\mathcal {M}}$, we introduce a version of the Drinfeld center ${\mathcal {Z}}({\mathcal {C}})$ of ${\mathcal {C}}$ adapted for ${\mathcal {M}}$; we refer to this category as the reflective center${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$ of ${\mathcal {M}}$. Just like ${\mathcal {Z}}({\mathcal {C}})$ is a canonical braided monoidal category attached to ${\mathcal {C}}$, we show that ${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$ is a canonical braided module category attached to ${\mathcal {M}}$; its properties are investigated in detail.
Our second goal pertains to when ${\mathcal {C}}$ is the category of modules over a quasitriangular Hopf algebra H, and ${\mathcal {M}}$ is the category of modules over an H-comodule algebra A. We show that the reflective center ${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$ here is equivalent to a category of modules over an explicit algebra, denoted by $R_H(A)$, which we call the reflective algebra of A. This result is akin to ${\mathcal {Z}}({\mathcal {C}})$ being represented by the Drinfeld double ${\operatorname {Drin}}(H)$ of H. We also study the properties of reflective algebras.
Our third set of results is also in the Hopf setting above. We show that reflective algebras are quasitriangular H-comodule algebras, and we examine their corresponding quantum K-matrices; this yields solutions to the qRE. We also establish that the reflective algebra $R_H(\mathbb {k})$ is an initial object in the category of quasitriangular H-comodule algebras, where $\mathbb {k}$ is the ground field. The case when H is the Drinfeld double of a finite group is illustrated.
In this paper, we consider a conilpotent coalgebra $C$ over a field $k$. Let $\Upsilon :\ C{{-\mathsf{Comod}}}\longrightarrow C^*{{-\mathsf{Mod}}}$ be the natural functor of inclusion of the category of $C$-comodules into the category of $C^*$-modules, and let $\Theta :\ C{{-\mathsf{Contra}}}\longrightarrow C^*{{-\mathsf{Mod}}}$ be the natural forgetful functor. We prove that the functor $\Upsilon$ induces a fully faithful triangulated functor on bounded (below) derived categories if and only if the functor $\Theta$ induces a fully faithful triangulated functor on bounded (above) derived categories, and if and only if the $k$-vector space $\textrm {Ext}_C^n(k,k)$ is finite-dimensional for all $n\ge 0$. We call such coalgebras “weakly finitely Koszul”.
It is proven that a matched pair of actions on a Hopf algebra H is equivalent to the datum of a Yetter–Drinfeld brace, which is a novel structure generalizing Hopf braces. This [-30pt] improves a theorem by Angiono, Galindo, and Vendramin, originally stated for cocommutative Hopf braces. These Yetter–Drinfeld braces produce Hopf algebras in the category of Yetter–Drinfeld modules over H, through an operation that generalizes Majid’s transmutation. A characterization of Yetter–Drinfeld braces via 1-cocycles, in analogy to the one for Hopf braces, is given.
Every coquasitriangular Hopf algebra H will be seen to yield a Yetter–Drinfeld brace, where the additional structure on H is given by the transmutation. We compute explicit examples of Yetter–Drinfeld braces on the Sweedler’s Hopf algebra, on the algebras $E(n)$, on $\mathrm {SL}_{q}(2)$, and an example in the class of Suzuki algebras.
A complete description of all possible multiplicative groups of finite skew left braces whose additive group has trivial centre is given. As a consequence, some earlier results of Tsang can be improved and an answer to an open question set by Tsang at Ischia Group Theory 2024 Conference is provided.
We present a construction of left braces of right nilpotency class at most two based on suitable actions of an abelian group on itself with an invariance condition. This construction allows us to recover the construction of a free right nilpotent one-generated left brace of class two.
The proof of Theorem 3.14 contains an unsubstantiated claim. To overcome this problem, we add a hypothesis to the statement of 3.14 and we provide a new valid proof. We adjust Theorem 3.15, Corollary 3.16, Proposition 4.23, Theorem 4.26, Corollary 4.29, and Corollary 4.32 accordingly.
Nilpotency concepts for skew braces are among the main tools with which we are nowadays classifying certain special solutions of the Yang–Baxter equation, a consistency equation that plays a relevant role in quantum statistical mechanics and in many areas of mathematics. In this context, two relevant questions have been raised in F. Cedó, A. Smoktunowicz and L. Vendramin (Skew left braces of nilpotent type. Proc. Lond. Math. Soc. (3) 118 (2019), 1367–1392) (see questions 2.34 and 2.35) concerning right- and central nilpotency. The aim of this short note is to give a negative answer to both questions: thus, we show that a finite strong-nil brace B need not be right-nilpotent. On a positive note, we show that there is one (and only one, by our examples) special case of the previous questions that actually holds. In fact, we show that if B is a skew brace of nilpotent type and $b\ \ast \ b=0$ for all $b\in B$, then B is centrally nilpotent.
We establish a McKay correspondence for finite and linearly reductive subgroup schemes of ${\mathbf {SL}}_2$ in positive characteristic. As an application, we obtain a McKay correspondence for all rational double point singularities in characteristic $p\geq 7$. We discuss linearly reductive quotient singularities and canonical lifts over the ring of Witt vectors. In dimension 2, we establish simultaneous resolutions of singularities of these canonical lifts via G-Hilbert schemes. In the appendix, we discuss several approaches towards the notion of conjugacy classes for finite group schemes: This is an ingredient in McKay correspondences, but also of independent interest.
The main objective of the present paper is to present a version of the Tannaka–Krein type reconstruction theorems: if $F:{\mathcal B}\to {\mathcal C}$ is an exact faithful monoidal functor of tensor categories, one would like to realize ${\mathcal B}$ as category of representations of a braided Hopf algebra $H(F)$ in ${\mathcal C}$. We prove that this is the case iff ${\mathcal B}$ has the additional structure of a monoidal ${\mathcal C}$-module category compatible with F, which equivalently means that F admits a monoidal section. For Hopf algebras, this reduces to a version of the Radford projection theorem. The Hopf algebra is constructed through the relative coend for module categories. We expect this basic result to have a wide range of applications, in particular in the absence of fiber functors, and we give some applications. One particular motivation was the logarithmic Kazhdan–Lusztig conjecture.
In this paper, we give Pieri rules for skew dual immaculate functions and their recently discovered row-strict counterparts. We establish our rules using a right-action analogue of the skew Littlewood–Richardson rule for Hopf algebras of Lam–Lauve–Sottile. We also obtain Pieri rules for row-strict (dual) immaculate functions.
The aim of this paper is to study supersoluble skew braces, a class of skew braces that encompasses all finite skew braces of square-free order. It turns out that finite supersoluble skew braces have Sylow towers and that in an arbitrary supersoluble skew brace B many relevant skew brace-theoretical properties are easier to identify: For example, a centrally nilpotent ideal of B is B-centrally nilpotent, a fact that simplifies the computational search for the Fitting ideal; also, B has finite multipermutational level if and only if $(B,+)$ is nilpotent.
Given a finite presentation of the structure skew brace $G(X,r)$ associated with a finite nondegenerate solution of the Yang–Baxter equation (YBE), there is an algorithm that decides if $G(X,r)$ is supersoluble or not. Moreover, supersoluble skew braces are examples of almost polycyclic skew braces, so they give rise to solutions of the YBE on which one can algorithmically work on.
A quiver representation assigns a vector space to each vertex, and a linear map to each arrow of a quiver. When one considers the category $\mathrm {Vect}(\mathbb {F}_1)$ of vector spaces “over $\mathbb {F}_1$” (the field with one element), one obtains $\mathbb {F}_1$-representations of a quiver. In this paper, we study representations of a quiver over the field with one element in connection to coefficient quivers. To be precise, we prove that the category $\mathrm {Rep}(Q,\mathbb {F}_1)$ is equivalent to the (suitably defined) category of coefficient quivers over Q. This provides a conceptual way to see Euler characteristics of a class of quiver Grassmannians as the number of “$\mathbb {F}_1$-rational points” of quiver Grassmannians. We generalize techniques originally developed for string and band modules to compute the Euler characteristics of quiver Grassmannians associated with $\mathbb {F}_1$-representations. These techniques apply to a large class of $\mathbb {F}_1$-representations, which we call the $\mathbb {F}_1$-representations with finite nice length: we prove sufficient conditions for an $\mathbb {F}_1$-representation to have finite nice length, and classify such representations for certain families of quivers. Finally, we explore the Hall algebras associated with $\mathbb {F}_1$-representations of quivers. We answer the question of how a change in orientation affects the Hall algebra of nilpotent $\mathbb {F}_1$-representations of a quiver with bounded representation type. We also discuss Hall algebras associated with representations with finite nice length, and compute them for certain families of quivers.
In this work, we construct the deformed Butcher-Connes-Kreimer Hopf algebra coming from the theory of Regularity Structures as the universal envelope of a post-Lie algebra. We show that this can be done using either of the two combinatorial structures that have been proposed in the context of singular SPDEs: decorated trees and multi-indices. Our construction is inspired from multi-indices where the Hopf algebra was obtained as the universal envelope of a Lie algebra, and it has been proved that one can find a basis that is symmetric with respect to certain elements. We show that this Lie algebra comes from an underlying post-Lie structure.
The Hopf–Galois structures admitted by a Galois extension of fields $ L/K $ with Galois group G correspond bijectively with certain subgroups of $ \mathrm{Perm}(G) $. We use a natural partition of the set of such subgroups to obtain a method for partitioning the set of corresponding Hopf–Galois structures, which we term ρ-conjugation. We study properties of this construction, with particular emphasis on the Hopf–Galois analogue of the Galois correspondence, the connection with skew left braces, and applications to questions of integral module structure in extensions of local or global fields. In particular, we show that the number of distinct ρ-conjugates of a given Hopf–Galois structure is determined by the corresponding skew left brace, and that if $ H, H^{\prime} $ are Hopf algebras giving ρ-conjugate Hopf–Galois structures on a Galois extension of local or global fields $ L/K $ then an ambiguous ideal $ \mathfrak{B} $ of L is free over its associated order in H if and only if it is free over its associated order in Hʹ. We exhibit a variety of examples arising from interactions with existing constructions in the literature.
Skew left braces arise naturally from the study of non-degenerate set-theoretic solutions of the Yang–Baxter equation. To understand the algebraic structure of skew left braces, a study of the decomposition into minimal substructures is relevant. We introduce chief series and prove a strengthened form of the Jordan–Hölder theorem for finite skew left braces. A characterization of right nilpotency and an application to multipermutation solutions are also given.
We provide a correspondence between one-sided coideal subrings and one-sided ideal two-sided coideals in an arbitrary bialgebroid. We prove that, under some expected additional conditions, this correspondence becomes bijective for Hopf algebroids. As an application, we investigate normal Hopf ideals in commutative Hopf algebroids (affine groupoid schemes) in connection with the study of normal affine subgroupoids.
We generalize the shuffle theorem and its
$(km,kn)$
version, as conjectured by Haglund et al. and Bergeron et al. and proven by Carlsson and Mellit, and Mellit, respectively. In our version the
$(km,kn)$
Dyck paths on the combinatorial side are replaced by lattice paths lying under a line segment whose x and y intercepts need not be integers, and the algebraic side is given either by a Schiffmann algebra operator formula or an equivalent explicit raising operator formula. We derive our combinatorial identity as the polynomial truncation of an identity of infinite series of
$\operatorname {\mathrm {GL}}_{l}$
characters, expressed in terms of infinite series versions of LLT polynomials. The series identity in question follows from a Cauchy identity for nonsymmetric Hall–Littlewood polynomials.
We prove the extended delta conjecture of Haglund, Remmel and Wilson, a combinatorial formula for
$\Delta _{h_l}\Delta ' _{e_k} e_{n}$
, where
$\Delta ' _{e_k}$
and
$\Delta _{h_l}$
are Macdonald eigenoperators and
$e_n$
is an elementary symmetric function. We actually prove a stronger identity of infinite series of
$\operatorname {\mathrm {GL}}_m$
characters expressed in terms of LLT series. This is achieved through new results in the theory of the Schiffmann algebra and its action on the algebra of symmetric functions.
We present a categorical point of view on dynamical quantum groups in terms of categories of Harish-Chandra bimodules. We prove Tannaka duality theorems for forgetful functors into the monoidal category of Harish-Chandra bimodules in terms of a slight modification of the notion of a bialgebroid. Moreover, we show that the standard dynamical quantum groups
$F(G)$
and
$F_q(G)$
are related to parabolic restriction functors for classical and quantum Harish-Chandra bimodules. Finally, we exhibit a natural Weyl symmetry of the parabolic restriction functor using Zhelobenko operators and show that it gives rise to the action of the dynamical Weyl group.