Hostname: page-component-7dd5485656-hw7sx Total loading time: 0 Render date: 2025-10-29T01:49:08.316Z Has data issue: false hasContentIssue false

FROBENIUS-PERRON DIMENSIONS OF CONJUGACY CLASSES AND AN ITO-MICHLER-TYPE RESULT IN MODULAR FUSION CATEGORIES

Published online by Cambridge University Press:  28 August 2025

Sebastian Burciu*
Affiliation:
Inst. of Math. “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, RO-014700, Bucharest, Romania

Abstract

The influence of certain arithmetic conditions on the sizes of conjugacy classes of a finite group on the group structure has been extensively studied in recent years. In this paper, we explore analogous properties for fusion categories. In particular, we establish an Ito-Michler-type result for modular fusion categories.

MSC classification

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The author is supported by a Research Grant GAR 2023 (cod 114), supported from the Donors’ Recurrent Fund of the Romanian Academy, managed by the “PATRIMONIU” Foundation

References

Burciu, S and Palcoux, S (2024) Burnside type results for fusion rings. arXiv preprint 2302.07604v10.Google Scholar
Burciu, S and Palcoux, S (2024) Structure constants, Isaacs property and Extended-Haagerup fusion categories. Accepted to Comm. Alg. Google Scholar
Burciu, S (2020) Conjugacy classes and centralizers for pivotal fusion categories. Monatshefte für Mathematik 193(2), 1346.CrossRefGoogle Scholar
Burciu, S (2021) Structure constants for premodular categories. Bull. Lond. Math. Soc. 53(3), 777791.CrossRefGoogle Scholar
Burciu, S (2023) On the Galois symmetries for the character table of an integral fusion category. J. Algebra Appl. 22(1), Paper No. 2350026, 26.CrossRefGoogle Scholar
Burciu, S (2024) On Harada’s identity and some other consequences. Bull. Belg. Math. Soc. Simon Stevin 31(2), 211219.CrossRefGoogle Scholar
Chillag, D and Herzog, M (1990) On the length of the conjugacy classes of finite groups. J. Algebra 131(1), 110125.CrossRefGoogle Scholar
Czenky, A, Plavnik, J and Schopieray, A (2024) On frobenius-schur exponent bounds. arXiv preprint 2404.06643.Google Scholar
Cohen, M and Westreich, S (2011) Conjugacy classes, class sums and character tables for Hopf algebras. Comm. Algebra 39(12), 46184633.CrossRefGoogle Scholar
Cohen, M and Westreich, S (2014) Character tables and normal left coideal subalgebras. J. Pure and Appl. Algebra 218(10), 18451866.CrossRefGoogle Scholar
Drinfeld, V, Gelaki, S, Nikshych, D and Ostrik, V (2007) Group-theoretical properties of nilpotent modular categories. arXiv preprint 0704.0195v2.Google Scholar
Drinfeld, V, Gelaki, S, Nikshych, D and Ostrik, V (2010) On braided fusion categories, I. Sel. Math. New Ser. 16, 1119.CrossRefGoogle Scholar
Etingof, P, Gelaki, S, Nikshych, D and Ostrik, V (2015) Tensor Categories, vol. 205. Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
Etingof, P, Nikshych, D and Ostrik, V (2005) On fusion categories. Ann. of Math. (2) 162(2), 581642.CrossRefGoogle Scholar
Gelaki, S and Nikshych, D (2008) Nilpotent fusion categories. Adv. Math. 217(3), 10531071.CrossRefGoogle Scholar
Isaacs, M (1976) Character Theory of Finite Groups. New York, San Francisco, London: Academic Press.Google Scholar
Lewis, ML (2008) An overview of graphs associated with character degrees and conjugacy class sizes in finite groups. Rocky Mountain J. Math. 38(1), 175211.CrossRefGoogle Scholar
Manz, O (1987) Arithmetical conditions on character degrees and group structure. Proc. Sympos. Pure Math. 41(2), 6569.CrossRefGoogle Scholar
Michler, GO (1986) Brauer’s conjectures and the classification of finite simple groups. In Dlab, V, Gabriel, P and Michler, G (eds), Representation Theory II Groups and Orders. Berlin, Heidelberg: Springer Berlin Heidelberg, 129142.CrossRefGoogle Scholar
Müger, M (2003) From subfactors to categories and topology i: Frobenius algebras in and morita equivalence of tensor categories. J. Pure Appl. Algebra 180(1), 81157.CrossRefGoogle Scholar
Robinson, DJS (1996) A Course in the Theory of Groups. Lecture Notes in Mathematics. New York: Springer-Verlag.CrossRefGoogle Scholar
Shimizu, K (2017) The monoidal center and the character algebra. J. Pure Appl. Algebra 221(9), 23382371.CrossRefGoogle Scholar
Zhu, Y (1994) Hopf algebras of prime dimension. Int. Math. Res. Not. 1, 5359.CrossRefGoogle Scholar