We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that a ring R is an
$n \times n$
matrix ring (that is,
$R \cong \mathbb {M}_n(S)$
for some ring S) if and only if there exists a (von Neumann) regular element x in R such that
$l_R(x) = R{x^{n-1}}$
. As applications, we prove some new results, strengthen some known results and provide easier proofs of other results. For instance, we prove that if a ring R has elements x and y such that
$x^n = 0$
,
$Rx+Ry = R$
and
$Ry \cap l_{R}(x^{n-1}) = 0$
, then R is an
$n \times n$
matrix ring. This improves a result of Fuchs [‘A characterisation result for matrix rings’, Bull. Aust. Math. Soc.43 (1991), 265–267] where it is proved assuming further that the element y is nilpotent of index two and
$x+y$
is a unit. For an ideal I of a ring R, we prove that the ring
$(\begin {smallmatrix} R & I \\ R & R \end {smallmatrix})$
is a
$2 \times 2$
matrix ring if and only if
$R/I$
is so.
Let R be a finite ring and let
${\mathrm {zp}}(R)$
denote the nullity degree of R, that is, the probability that the multiplication of two randomly chosen elements of R is zero. We establish the nullity degree of a semisimple ring and find upper and lower bounds for the nullity degree in the general case.
Let R be a ring with identity of characteristic two and G a nontrivial torsion group. We show that if the units in the group ring
$RG$
are all trivial, then G must be cyclic of order two or three. We also consider the case where R is a commutative ring with identity of odd prime characteristic and G is a nontrivial locally finite group. We show that in this case, if the units in
$RG$
are all trivial, then G must be cyclic of order two. These results improve on a result of Herman et al. [‘Trivial units for group rings with G-adapted coefficient rings’, Canad. Math. Bull.48(1) (2005), 80–89].
Let R = K[x, σ] be the skew polynomial ring over a field K, where σ is an automorphism of K of finite order. We show that prime elements in R correspond to completely prime one-sided ideals – a notion introduced by Reyes in 2010. This extends the natural correspondence between prime elements and prime ideals in commutative polynomial rings.
We prove first-order definability of the prime subring inside polynomial rings, whose coefficient rings are (commutative unital) reduced and indecomposable. This is achieved by means of a uniform formula in the language of rings with signature $(0,1,+,\cdot )$. In the characteristic zero case, the claim implies that the full theory is undecidable, for rings of the referred type. This extends a series of results by Raphael Robinson, holding for certain polynomial integral domains, to a more general class.
An element a in a ring R is left annihilator-stable (or left AS) if, whenever
$Ra+{\rm l}(b)=R$
with
$b\in R$
,
$a-u\in {\rm l}(b)$
for a unit u in R, and the ring R is a left AS ring if each of its elements is left AS. In this paper, we show that the left AS elements in a ring form a multiplicatively closed set, giving an affirmative answer to a question of Nicholson [J. Pure Appl. Alg.221 (2017), 2557–2572.]. This result is used to obtain a necessary and sufficient condition for a formal triangular matrix ring to be left AS. As an application, we provide examples of left AS rings R over which the triangular matrix rings
${\mathbb T}_n(R)$
are not left AS for all
$n\ge 2$
. These examples give a negative answer to another question of Nicholson [J. Pure Appl. Alg.221 (2017), 2557–2572.] whether R/J(R) being left AS implies that R is left AS.
Let $A=\bigoplus _{i\in \mathbb{Z}}A_{i}$ be a finite-dimensional graded symmetric cellular algebra with a homogeneous symmetrizing trace of degree $d$. We prove that if $d\neq 0$ then $A_{-d}$ contains the Higman ideal $H(A)$ and $\dim H(A)\leq \dim A_{0}$, and provide a semisimplicity criterion for $A$ in terms of the centralizer of $A_{0}$.
We apply the filtered and graded methods developed in earlier works to find (noncommutative) free group algebras in division rings.
If $L$ is a Lie algebra, we denote by $U(L)$ its universal enveloping algebra. P. M. Cohn constructed a division ring $\mathfrak{D}_{L}$ that contains $U(L)$. We denote by $\mathfrak{D}(L)$ the division subring of $\mathfrak{D}_{L}$ generated by $U(L)$.
Let $k$ be a field of characteristic zero, and let $L$ be a nonabelian Lie $k$-algebra. If either $L$ is residually nilpotent or $U(L)$ is an Ore domain, we show that $\mathfrak{D}(L)$ contains (noncommutative) free group algebras. In those same cases, if $L$ is equipped with an involution, we are able to prove that the free group algebra in $\mathfrak{D}(L)$ can be chosen generated by symmetric elements in most cases.
Let $G$ be a nonabelian residually torsion-free nilpotent group, and let $k(G)$ be the division subring of the Malcev–Neumann series ring generated by the group algebra $k[G]$. If $G$ is equipped with an involution, we show that $k(G)$ contains a (noncommutative) free group algebra generated by symmetric elements.
A ring is called right annelidan if the right annihilator of any subset of the ring is comparable with every other right ideal. In this paper we develop the connections between this class of rings and the classes of right Bézout rings and rings whose right ideals form a distributive lattice. We obtain results on localization of right annelidan rings at prime ideals, chain conditions that entail left-right symmetry of the annelidan condition, and construction of completely prime ideals.
This paper is about rings $R$ for which every element is a sum of a tripotent and an element from the Jacobson radical $J(R)$. These rings are called semi-tripotent rings. Examples include Boolean rings, strongly nil-clean rings, strongly 2-nil-clean rings, and semi-boolean rings. Here, many characterizations of semi-tripotent rings are obtained. Necessary and sufficient conditions for a Morita context (respectively, for a group ring of an abelian group or a locally finite nilpotent group) to be semi-tripotent are proved.
We characterise finite unitary rings $R$ such that all Sylow subgroups of the group of units $R^{\ast }$ are cyclic. To be precise, we show that, up to isomorphism, $R$ is one of the three types of rings in $\{O,E,O\oplus E\}$, where $O\in \{GF(q),\mathbb{Z}_{p^{\unicode[STIX]{x1D6FC}}}\}$ is a ring of odd cardinality and $E$ is a ring of cardinality $2^{n}$ which is one of seven explicitly described types.
Let F be a field of characteristic two and G a finite abelian 2-group with an involutory automorphism η. If G = H × D with non-trivial subgroups H and D of G such that η inverts the elements of H (H without a direct factor of order 2) and fixes D element-wise, then the linear extension of η to the group algebra FG is called a nice involution. This determines the groups of unitary and symmetric normalized units of FG. We calculate the orders and the invariants of these subgroups.
If H is a monoid and a = u1 ··· uk ∈ H with atoms (irreducible elements) u1, … , uk, then k is a length of a, the set of lengths of a is denoted by Ⅼ(a), and ℒ(H) = {Ⅼ(a) | a ∈ H} is the system of sets of lengths of H. Let R be a hereditary Noetherian prime (HNP) ring. Then every element of the monoid of non-zero-divisors R• can be written as a product of atoms. We show that if R is bounded and every stably free right R-ideal is free, then there exists a transfer homomorphism from R• to the monoid B of zero-sum sequences over a subset Gmax(R) of the ideal class group G(R). This implies that the systems of sets of lengths, together with further arithmetical invariants, of the monoids R• and B coincide. It is well known that commutative Dedekind domains allow transfer homomorphisms to monoids of zero-sum sequences, and the arithmetic of the latter has been the object of much research. Our approach is based on the structure theory of finitely generated projective modules over HNP rings, as established in the recent monograph by Levy and Robson. We complement our results by giving an example of a non-bounded HNP ring in which every stably free right R-ideal is free but which does not allow a transfer homomorphism to a monoid of zero-sum sequences over any subset of its ideal class group.
In this paper we study the behavior of the first Zassenhaus conjecture (ZC1) under direct products, as well as the General Bovdi Problem (Gen-BP), which turns out to be a slightly weaker variant of (ZC1). Among other things, we prove that (Gen-BP) holds for Sylow tower groups, and so in particular for the class of supersolvable groups.
(ZC1) is established for a direct product of Sylow-by-abelian groups provided the normal Sylow subgroups form together a Hall subgroup. We also show (ZC1) for certain direct products with one of the factors a Frobenius group.
We extend the classical HeLP method to group rings with coefficients from any ring of algebraic integers. This is used to study (ZC1) for the direct product $G\times A$, where $A$ is a finite abelian group and $G$ has order at most 95. For most of these groups we show that (ZC1) is valid and for all of them that (Gen-BP) holds. Moreover, we also prove that (Gen-BP) holds for the direct product of a Frobenius group with any finite abelian group.
We determine sufficient criteria for the prime spectrum of an ambiskew polynomial algebra R over an algebraically closed field 𝕂 to be akin to those of two of the principal examples of such an algebra, namely the universal enveloping algebra U(sl2) (in characteristic 0) and its quantization Uq(sl2) (when q is not a root of unity). More precisely, we determine sufficient criteria for the prime spectrum of R to consist of 0, the ideals (z − λ)R for some central element z of R and all λ ∈ 𝕂, and, for some positive integer d and each positive integer m, d height two prime ideals P for which R/P has Goldie rank m.
We introduce a new method to study rational conjugacy of torsion units in integral group rings using integral and modular representation theory. Employing this new method, we verify the first Zassenhaus conjecture for the group PSL(2, 19). We also prove the Zassenhaus conjecture for PSL(2, 23). In a second application we show that there are no normalized units of order 6 in the integral group rings of M10 and PGL(2, 9). This completes the proof of a theorem of Kimmerle and Konovalov that shows that the prime graph question has an affirmative answer for all groups having an order divisible by at most three different primes.
We prove that an integral Jacobson radical ring is always nil, which extends a well-known result from algebras over fields to rings. As a consequence we show that if every element x of a ring R is a zero of some polynomial px with integer coefficients, such that px(1) = 1, then R is a nil ring. With these results we are able to give new characterizations of the upper nilradical of a ring and a new class of rings that satisfy the Köthe conjecture: namely, the integral rings.
In this paper we demonstrate that non-commutative localizations of arbitrary additive categories (generalizing those defined by Cohn in the setting of rings) are closely (and naturally) related to weight structures. Localizing an arbitrary triangulated category $\text{}\underline{C}$ by a set $S$ of morphisms in the heart $\text{}\underline{Hw}$ of a weight structure $w$ on it one obtains a triangulated category endowed with a weight structure $w^{\prime }$. The heart of $w^{\prime }$ is a certain version of the Karoubi envelope of the non-commutative localization $\text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$ (of $\text{}\underline{Hw}$ by $S$). The functor $\text{}\underline{Hw}\rightarrow \text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$ is the natural categorical version of Cohn’s localization of a ring, i.e., it is universal among additive functors that make all elements of $S$ invertible. For any additive category $\text{}\underline{A}$, taking $\text{}\underline{C}=K^{b}(\text{}\underline{A})$ we obtain a very efficient tool for computing $\text{}\underline{A}[S^{-1}]_{\mathit{add}}$; using it, we generalize the calculations of Gerasimov and Malcolmson (made for rings only). We also prove that $\text{}\underline{A}[S^{-1}]_{\mathit{add}}$ coincides with the ‘abstract’ localization $\text{}\underline{A}[S^{-1}]$ (as constructed by Gabriel and Zisman) if $S$ contains all identity morphisms of $\text{}\underline{A}$ and is closed with respect to direct sums. We apply our results to certain categories of birational motives $DM_{gm}^{o}(U)$ (generalizing those defined by Kahn and Sujatha). We define $DM_{gm}^{o}(U)$ for an arbitrary $U$ as a certain localization of $K^{b}(Cor(U))$ and obtain a weight structure for it. When $U$ is the spectrum of a perfect field, the weight structure obtained this way is compatible with the corresponding Chow and Gersten weight structures defined by the first author in previous papers. For a general $U$ the result is completely new. The existence of the corresponding adjacent$t$-structure is also a new result over a general base scheme; its heart is a certain category of birational sheaves with transfers over $U$.
Let ${\mathcal{A}}$ be a unital ring with involution. Assume that ${\mathcal{A}}$ contains a nontrivial symmetric idempotent and ${\it\phi}:{\mathcal{A}}\rightarrow {\mathcal{A}}$ is a nonlinear surjective map. We prove that if ${\it\phi}$ preserves strong skew commutativity, then ${\it\phi}(A)=ZA+f(A)$ for all $A\in {\mathcal{A}}$, where $Z\in {\mathcal{Z}}_{s}({\mathcal{A}})$ satisfies $Z^{2}=I$ and $f$ is a map from ${\mathcal{A}}$ into ${\mathcal{Z}}_{s}({\mathcal{A}})$. Related results concerning nonlinear strong skew commutativity preserving maps on von Neumann algebras are given.