We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that for a Noetherian ring A that is I-adically complete for an ideal I, if $A/I$ admits a dualizing complex, so does A. This gives an alternative proof of the fact that a Noetherian complete local ring admits a dualizing complex. We discuss several consequences of this result. We also consider a generalization of the notion of dualizing complexes to infinite-dimensional rings and prove the results in this generality. In addition, we give an alternative proof of the fact that every excellent Henselian local ring admits a dualizing complex, using ultrapower.
We give an explicit formula to count the number of geometric branches of a curve in positive characteristic using the theory of tight closure. This formula readily shows that the property of having a single geometric branch characterizes F-nilpotent curves. Further, we show that a reduced, local F-nilpotent ring has a single geometric branch; in particular, it is a domain. Finally, we study inequalities of Frobenius test exponents along purely inseparable ring extensions with applications to F-nilpotent affine semigroup rings.
Valuation rings and perfectoid rings are examples of (usually non-Noetherian) rings that behave in some sense like regular rings. We give and study an extension of the concept of regular local rings to non-Noetherian rings so that it includes valuation and perfectoid rings and it is related to Grothendieck’s definition of formal smoothness as in the Noetherian case. For that, we have to take into account the topologies. We prove a descent theorem for regularity along flat homomorphisms (in fact for homomorphisms of finite flat dimension), extending some known results from the Noetherian to the non-Noetherian case, as well as generalizing some recent results in the non-Noetherian case, such as the descent of regularity from perfectoid rings by B. Bhatt, S. Iyengar and L. Ma.
There are several ways to convert a closure or interior operation to a different operation that has particular desirable properties. In this paper, we axiomatize three ways to do so, drawing on disparate examples from the literature, including tight closure, basically full closure, and various versions of integral closure. In doing so, we explore several such desirable properties, including hereditary, residual, and cofunctorial, and see how they interact with other properties such as the finitistic property.
In this article, we prove that a complete Noetherian local domain of mixed characteristic $p>0$ with perfect residue field has an integral extension that is an integrally closed, almost Cohen–Macaulay domain such that the Frobenius map is surjective modulo p. This result is seen as a mixed characteristic analog of the fact that the perfect closure of a complete local domain in positive characteristic is almost Cohen–Macaulay. To this aim, we carry out a detailed study of decompletion of perfectoid rings and establish the Witt-perfect (decompleted) version of André’s perfectoid Abhyankar’s lemma and Riemann’s extension theorem.
Let
$f:R\to S$
be a ring homomorphism and J be an ideal of S. Then the subring
$R\bowtie ^fJ:=\{(r,f(r)+j)\mid r\in R$
and
$j\in J\}$
of
$R\times S$
is called the amalgamation of R with S along J with respect to f. In this paper, we characterize when
$R\bowtie ^fJ$
is a Hilbert ring. As an application, we provide an example of Hilbert ring with maximal ideals of different heights. We also construct non-Noetherian Hilbert rings whose maximal ideals are all finitely generated (unruly Hilbert rings).
We introduce a notion of embedding codimension of an arbitrary local ring, establish some general properties and study in detail the case of arc spaces of schemes of finite type over a field. Viewing the embedding codimension as a measure of singularities, our main result can be interpreted as saying that the singularities of the arc space are maximal at the arcs that are fully embedded in the singular locus of the underlying scheme, and progressively improve as we move away from said locus. As an application, we complement a theorem of Drinfeld, Grinberg and Kazhdan on formal neighbourhoods in arc spaces by providing a converse to their theorem, an optimal bound for the embedding codimension of the formal model appearing in the statement, a precise formula for the embedding dimension of the model constructed in Drinfeld’s proof and a geometric meaningful way of realising the decomposition stated in the theorem.
Let R be a commutative ring with identity which is not an integral domain. An ideal I of R is called an annihilating ideal if there exists
$r\in R- \{0\}$
such that
$Ir=(0)$
. The total graph of nonzero annihilating ideals of R is the graph
$\Omega (R)$
whose vertices are the nonzero annihilating ideals of R and two distinct vertices
$I,J$
are joined if and only if
$I+J$
is also an annihilating ideal of R. We study the strong metric dimension of
$\Omega (R)$
and evaluate it in several cases.
We study the depth filtration on multiple zeta values, on the motivic Galois group of mixed Tate motives over $\mathbb {Z}$ and on the Grothendieck–Teichmüller group, and its relation to modular forms. Using period polynomials for cusp forms for $\mathrm {SL} _2(\mathbb {Z})$, we construct an explicit Lie algebra of solutions to the linearized double shuffle equations, which gives a conjectural description of all identities between multiple zeta values modulo $\zeta (2)$ and modulo lower depth. We formulate a single conjecture about the homology of this Lie algebra which implies conjectures due to Broadhurst and Kreimer, Racinet, Zagier, and Drinfeld on the structure of multiple zeta values and on the Grothendieck–Teichmüller Lie algebra.
It is well-known that an element of a commutative ring with identity is nilpotent if, and only if , it lies in every prime ideal of the ring. A modification of this fact is amenable to a very simple proof mining analysis. We formulate a quantitative version of this modification and obtain an explicit bound. We present an application. This proof mining analysis is the leitmotif for some comments and observations on the methodology of computational extraction. In particular, we emphasize that the formulation of quantitative versions of ordinary mathematical theorems is of independent interest from proof mining metatheorems.
We relate the analytic spread of a module expressed as the direct sum of two submodules with the analytic spread of its components. We also study a class of submodules whose integral closure can be expressed in terms of the integral closure of its row ideals, and therefore can be obtained by means of a simple computer algebra procedure. In particular, we analyze a class of modules, not necessarily of maximal rank, whose integral closure is determined by the family of Newton polyhedra of their row ideals.
We prove first-order definability of the prime subring inside polynomial rings, whose coefficient rings are (commutative unital) reduced and indecomposable. This is achieved by means of a uniform formula in the language of rings with signature $(0,1,+,\cdot )$. In the characteristic zero case, the claim implies that the full theory is undecidable, for rings of the referred type. This extends a series of results by Raphael Robinson, holding for certain polynomial integral domains, to a more general class.
Let $X$ be a nonempty set and ${\mathcal{P}}(X)$ the power set of $X$. The aim of this paper is to identify the unital subrings of ${\mathcal{P}}(X)$ and to compute its cardinality when it is finite. It is proved that any topology $\unicode[STIX]{x1D70F}$ on $X$ such that $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D70F}^{c}$, where $\unicode[STIX]{x1D70F}^{c}=\{U^{c}\mid U\in \unicode[STIX]{x1D70F}\}$, is a unital subring of ${\mathcal{P}}(X)$. It is also shown that $X$ is finite if and only if any unital subring of ${\mathcal{P}}(X)$ is a topology $\unicode[STIX]{x1D70F}$ on $X$ such that $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D70F}^{c}$ if and only if the set of unital subrings of ${\mathcal{P}}(X)$ is finite. As a consequence, if $X$ is finite with cardinality $n\geq 2$, then the number of unital subrings of ${\mathcal{P}}(X)$ is equal to the $n$th Bell number and the supremum of the lengths of chains of unital subalgebras of ${\mathcal{P}}(X)$ is equal to $n-1$.
We prove that the integral closure of a strongly Golod ideal in a polynomial ring over a field of characteristic zero is strongly Golod, positively answering a question of Huneke. More generally, the rational power $I_{\unicode[STIX]{x1D6FC}}$ of an arbitrary homogeneous ideal is strongly Golod for $\unicode[STIX]{x1D6FC}\geqslant 2$ and, if $I$ is strongly Golod, then $I_{\unicode[STIX]{x1D6FC}}$ is strongly Golod for $\unicode[STIX]{x1D6FC}\geqslant 1$. We also show that all the coefficient ideals of a strongly Golod ideal are strongly Golod.
In this paper, we will prove that any $\mathbb{A}^{3}$-form over a field $k$ of characteristic zero is trivial provided it has a locally nilpotent derivation satisfying certain properties. We will also show that the result of Kambayashi on the triviality of separable $\mathbb{A}^{2}$-forms over a field $k$ extends to $\mathbb{A}^{2}$-forms over any one-dimensional Noetherian domain containing $\mathbb{Q}$.
Let A ⊂ B be an integral ring extension of integral domains with fields of fractions K and L, respectively. The integral degree of A ⊂ B, denoted by dA(B), is defined as the supremum of the degrees of minimal integral equations of elements of B over A. It is an invariant that lies in between dK(L) and μA(B), the minimal number of generators of the A-module B. Our purpose is to study this invariant. We prove that it is sub-multiplicative and upper-semicontinuous in the following three cases: if A ⊂ B is simple; if A ⊂ B is projective and finite and K ⊂ L is a simple algebraic field extension; or if A is integrally closed. Furthermore, d is upper-semicontinuous if A is noetherian of dimension 1 and with finite integral closure. In general, however, d is neither sub-multiplicative nor upper-semicontinuous.
Let $S|_{R}$ be a groupoid Galois extension with Galois groupoid $G$ such that $E_{g}^{G_{r(g)}}\subseteq C1_{g}$, for all $g\in G$, where $C$ is the centre of $S$, $G_{r(g)}$ is the principal group associated to $r(g)$ and $\{E_{g}\}_{g\in G}$ are the ideals of $S$. We give a complete characterisation in terms of a partial isomorphism groupoid for such extensions, showing that $G=\dot{\bigcup }_{g\in G}\text{Isom}_{R}(E_{g^{-1}},E_{g})$ if and only if $E_{g}$ is a connected commutative algebra or $E_{g}=E_{g}^{G_{r(g)}}\oplus E_{g}^{G_{r(g)}}$, where $E_{g}^{G_{r(g)}}$ is connected, for all $g\in G$.
Let $A_{2}$ be a free associative algebra or polynomial algebra of rank two over a field of characteristic zero. The main results of this paper are the classification of noninjective endomorphisms of $A_{2}$ and an algorithm to determine whether a given noninjective endomorphism of $A_{2}$ has a nontrivial fixed element for a polynomial algebra. The algorithm for a free associative algebra of rank two is valid whenever an element is given and the subalgebra generated by this element contains the image of the given noninjective endomorphism.
Let $R\subset S$ be an extension of integral domains, with $R^{\ast }$ the integral closure of $R$ in $S$. We study the set of intermediate rings between $R$ and $S$. We establish several necessary and sufficient conditions for which every ring contained between $R$ and $S$ compares with $R^{\ast }$ under inclusion. This answers a key question that figured in the work of Gilmer and Heinzer [‘Intersections of quotient rings of an integral domain’, J. Math. Kyoto Univ.7 (1967), 133–150].
We find conditions on the local cohomology modules of multi-Rees algebras of admissible filtrations which enable us to predict joint reduction numbers. As a consequence, we are able to prove a generalization of a result of Reid, Roberts and Vitulli in the setting of analytically unramified local rings for completeness of power products of complete ideals.