Hostname: page-component-54dcc4c588-smtgx Total loading time: 0 Render date: 2025-09-12T05:54:28.815Z Has data issue: false hasContentIssue false

ON THE TRIVIALITY OF AN $\mathbb A^2$-FIBRATION OVER A DVR

Published online by Cambridge University Press:  12 September 2025

PARNASHREE GHOSH
Affiliation:
School of Mathematics Tata Institute of Fundamental ResearchMumbai-400005Indiapmaths@math.tifr.res.in
NEENA GUPTA*
Affiliation:
Theoretical Statistics and Mathematics Unit Indian Statistical Institute Kolkata-700108India

Abstract

In this article, we show that any $\mathbb {A}^2$-fibration over a discrete valuation ring which is also an $\mathbb {A}^2$-form is necessarily a polynomial ring. Further, we show that separable $\mathbb {A}^2$-forms over principal ideal domains are trivial.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abhyankar, S., Eakin, P. and Heinzer, W., On the uniqueness of the coefficient ring in a polynomial ring , J. Algebra 23 (1972), 310342.10.1016/0021-8693(72)90134-2CrossRefGoogle Scholar
Asanuma, T., Polynomial fibre rings of algebras over Noetherian rings , Invent. Math. 87 (1987), 101127.10.1007/BF01389155CrossRefGoogle Scholar
Asanuma, T., Purely inseparable $k$ -forms of affine algebraic curves , Contemp. Math. 369 (2005), 3146.10.1090/conm/369/06802CrossRefGoogle Scholar
Bass, H., Connell, E. H. and Wright, D. L., Locally polynomial algebras are symmetric algebras , Invent. Math. 38 (1977), 279299.10.1007/BF01403135CrossRefGoogle Scholar
Bhatwadekar, S. M. and Dutta, A. K., Linear planes over a discrete valuation ring , J. Algebra 166 (1994), 393405.10.1006/jabr.1994.1159CrossRefGoogle Scholar
Dutta, A. K., On separable ${A}^1$ -forms , Nagoya Math. J. 159 (2000), 4551.10.1017/S0027763000007418CrossRefGoogle Scholar
Ghosh, P., Gupta, N. and Pal, A., On the family of affine threefolds $a(x)y=F\left(x,z,t\right)$ , preprint. https://arxiv.org/abs/2403.17397 Google Scholar
Ischebeck, F. and Rao, R., Ideals and reality, Springer-Verlag, Berlin, 2005.Google Scholar
Kambayashi, T., On the absence of nontrivial separable forms of the affine plane , J. Algebra 35 (1975), 449456.10.1016/0021-8693(75)90058-7CrossRefGoogle Scholar
Matsumura, H., Commutative Ring Theory, 2nd ed., Cambridge University Press, Cambridge, 1989.Google Scholar
Sathaye, A., Polynomial Ring in two variables over a D.V.R.: A criterion , Invent. Math. 74 (1983), 159168.10.1007/BF01388536CrossRefGoogle Scholar
Suslin, A. A., Locally polynomial rings and symmetric algebras (Russian) , Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 3, 503515.Google Scholar
Veǐsfeǐler, B. and Dolgačev, I. V., Unipotent group schemes over integral rings , Izv. Akad. Nauk SSSR Ser Mat 38 (1974), 757799.Google Scholar
The Stacks project authors, The stacks project, 2022. https://stacks.math.columbia.edu Google Scholar