Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T20:42:19.802Z Has data issue: false hasContentIssue false

Generalization of Klain’s theorem to Minkowski symmetrization of compact sets and related topics

Published online by Cambridge University Press:  02 November 2021

Jacopo Ulivelli*
Affiliation:
Department of Mathematics, “G. Castelnuovo” Sapienza University of Rome, Piazzale Aldo Moro, 5, Rome 00185, Italy

Abstract

We shall prove a convergence result relative to sequences of Minkowski symmetrals of general compact sets. In particular, we investigate the case when this process is induced by sequences of subspaces whose elements belong to a finite family, following the path marked by Klain in Klain (2012, Advances in Applied Mathematics 48, 340–353), and the generalizations in Bianchi et al. (2019, Convergence of symmetrization processes, preprint) and Bianchi et al. (2012, Indiana University Mathematics Journal 61, 1695–1710). We prove an analogous result for fiber symmetrization of a specific class of compact sets. The idempotency for symmetrizations of this family of sets is investigated, leading to a simple generalization of a result from Klartag (2004, Geometric and Functional Analysis 14, 1322–1338) regarding the approximation of a ball through a finite number of symmetrizations, and generalizing an approximation result in Fradelizi, Làngi and Zvavitch (2020, Volume of the Minkowski sums of star-shaped sets, preprint).

Type
Article
Copyright
© Canadian Mathematical Society, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asad, R. and Burchard, A., Steiner symmetrization along a certain equidistributed sequence of directions. Preprint, 2020. arXiv:2005.13597Google Scholar
Bianchi, G., Burchard, A., Gronchi, P., and Volcic, A., Convergence in shape of Steiner symmetrization . Indiana Univ. Math. J. 61(2012), 16951710.CrossRefGoogle Scholar
Bianchi, G., Gardner, R. J., and Gronchi, P., Symmetrization in geometry . Adv. Math. 306(2016), 5188.CrossRefGoogle Scholar
Bianchi, G., Gardner, R. J., and Gronchi, P., Convergence of symmetrization processes. Preprint, 2019. arXiv:1908.03259 Google Scholar
Bianchi, G., Klain, D. A., Lutwak, E., Yang, D., and Zhang, G., A countable set of directions is sufficient for Steiner symmetrization . Adv. Appl. Math. 47(2011), no. 4, 869873.CrossRefGoogle Scholar
Blaschke, W., Kreis und Kugel, 2nd ed., Walter de Gruyter, Berlino, 1956.CrossRefGoogle Scholar
Coupier, D. and Davydov, Yu., Random symmetrization of convex bodies . Adv. Appl. Prob. 46(2014), 603621.CrossRefGoogle Scholar
Fradelizi, M., Lángi, Z., and Zvavitch, A., Volume of the Minkowski sums of star-shaped sets. Preprint, 2021. arXiv:1910.06146 CrossRefGoogle Scholar
Fradelizi, M., Madiman, M., Marsiglietti, A., and Zvavitch, A., The convexification effect of Minkowski summation . EMS Surv. Math. Sci. 5(2018), 164.CrossRefGoogle Scholar
Gardner, R. J., The Brunn–Minkowski inequality . Bull. Amer. Math. Soc. 39(2002), 355405.CrossRefGoogle Scholar
Gardner, R. J., Tomographic geometry, 2nd ed., Cambridge: Cambridge University Press, 2006.CrossRefGoogle Scholar
Gruber, P. M., Convex and discrete geometry, Springer, Berlin–Heidelberg, 2007.Google Scholar
Klain, D. A., Steiner symmetrization using a finite set of directions . Adv. Appl. Math. 48(2012), 340353.CrossRefGoogle Scholar
Klartag, B., 5n Minkowski symmetrizations suffice to arrive at an approximate Euclidean ball . Ann. of Math. 156(2002), 947960.CrossRefGoogle Scholar
Klartag, B., Rate of convergence of geometric symmetrizations . Geom. Funct. Anal. 14(2004), 13221338.CrossRefGoogle Scholar
Lay, S. R., Convex sets and their applications, John Wiley and sons, New York, 1982.Google Scholar
Matoušek, J., On directional convexity . Discrete Comput. Geom. 25(2001), 389403.CrossRefGoogle Scholar
Milman, E. and Yehudayoff, A., Sharp isoperimetric inequalities for affine quermassintegrals. Preprint, 2020. arXiv:2005.04769 Google Scholar
Saroglou, C., On some problems concerning symmetrization operators . Forum Math. 31, no. 2, (2019), 479489.CrossRefGoogle Scholar
Schneider, R., Convex bodies: the Brunn–Minkowski theory, 2nd expanded ed., Encyclopedia of Mathematics and Its Applications, 151, Cambridge University Press, Cambridge, 2014.Google Scholar
Starr, R., Quasi-equilibria in markets with non-convex preferences . Econometrica 37(1969), 2538.CrossRefGoogle Scholar
Volcic, A., On iterations of Steiner symmetrizations . Ann. Mat. Pura Appl. 195(2016), 16851692.CrossRefGoogle Scholar