We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This overview discusses the inverse scattering theory for the Kadomtsev–Petviashvili II equation, focusing on the inverse problem for perturbed multi-line solitons. Despite the introduction of new techniques to handle singularities, the theory remains consistent across various backgrounds, including the vacuum, 1-line and multi-line solitons.
In this paper, we study the Cauchy problem for pseudo-parabolic equations with a logarithmic nonlinearity. After establishing the existence and uniqueness of weak solutions within a suitable functional framework, we investigate several qualitative properties, including the asymptotic behaviour and blow-up of solutions as $t\to +\infty$. Moreover, when the initial data are close to a Gaussian function, we prove that these weak solutions exhibit either super-exponential growth or super-exponential decay.
Let $n\ge2$, $s\in(0,1)$, and $\Omega\subset\mathbb{R}^n$ be a bounded Lipschitz domain. In this paper, we investigate the global (higher-order) Sobolev regularity of weak solutions to the fractional Dirichlet problem
Precisely, we prove that there exists a positive constant $\varepsilon\in(0,s]$ depending on n, s, and the Lipschitz constant of Ω such that, for any $t\in[\varepsilon,\min\{1+\varepsilon,2s\})$, when $f\in L^q(\Omega)$ with some $q\in(\frac{n}{2s-t},\infty]$, the weak solution u satisfies
for all $p\in[1,\frac{1}{t-\varepsilon})$. In particular, when Ω is a bounded C1 domain or a bounded Lipschitz domain satisfying the uniform exterior ball condition, the aforementioned global regularity estimates hold with $\varepsilon=s$ and they are sharp in this case. Moreover, if Ω is a bounded $C^{1,\kappa}$ domain with $\kappa\in(0,s)$ or a bounded Lipschitz domain satisfying the uniform exterior ball condition, we further show the global BMO-Sobolev regularity estimate
Numerous evolution equations with nonlocal convolution-type interactions have been proposed. In some cases, a convolution was imposed as the velocity in the advection term. Motivated by analysing these equations, we approximate advective nonlocal interactions as local ones, thereby converting the effect of nonlocality. In this study, we investigate whether the solution to the nonlocal Fokker–Planck equation can be approximated using the Keller–Segel system. By singular limit analysis, we show that this approximation is feasible for the Fokker–Planck equation with any potential and that the convergence rate is specified. Moreover, we provide an explicit formula for determining the coefficient of the Lagrange interpolation polynomial with Chebyshev nodes. Using this formula, the Keller–Segel system parameters for the approximation are explicitly specified by the shape of the potential in the Fokker–Planck equation. Consequently, we demonstrate the relationship between advective nonlocal interactions and a local dynamical system.
where $s\in (0,1)$, $N \gt 2s$, $H \in C^1(\mathbb{R}^2, \mathbb{R})$, and $\Omega \subset \mathbb{R}^N$ is a smooth bounded domain. To apply the variational method for this problem, the key question is to find a suitable functional setting. Instead of usual fractional Sobolev spaces, we use the solution space of $(-\Delta)^{s}u=f\in L^r(\Omega)$ for $r\ge 1$, for which we show the (compact) embedding properties. When H has subcritical and superlinear growth, we construct two frameworks, respectively with the interpolation space method and the dual method, to show the existence of nontrivial solution. As byproduct, we revisit the fractional Lane–Emden system, i.e. $H(u, v)=\frac{1}{p+1}|u|^{p+1}+\frac{1}{q+1}|v|^{q+1}$, and consider the existence, uniqueness of (radial) positive solutions under subcritical assumption.
This paper is the latter part of a series of our studies on the concentration and oscillation analysis of semilinear elliptic equations with exponential growth $e^{u^p}$. In the first one [17], we completed the concentration analysis of blow-up positive solutions in the supercritical case p > 2 via a scaling approach. As a result, we detected infinite sequences of concentrating parts with precise quantification. In the present paper, we proceed to our second aim, the oscillation analysis. Especially, we deduce an infinite oscillation estimate directly from the previous infinite concentration ones. This allows us to investigate intersection properties between blow-up solutions and singular functions. Consequently, we show that the intersection number between blow-up and singular solutions diverges to infinity. This leads to a proof of infinite oscillations of bifurcation diagrams, which ensures the existence of infinitely many solutions. Finally, we also remark on infinite concentration and oscillation phenomena in the limit cases $p\to2^+$ and $p\to \infty$.
We prove the convergence of a Wasserstein gradient flow of a free energy in inhomogeneous media. Both the energy and media can depend on the spatial variable in a fast oscillatory manner. In particular, we show that the gradient-flow structure is preserved in the limit, which is expressed in terms of an effective energy and Wasserstein metric. The gradient flow and its limiting behavior are analysed through an energy dissipation inequality. The result is consistent with asymptotic analysis in the realm of homogenisation. However, we note that the effective metric is in general different from that obtained from the Gromov–Hausdorff convergence of metric spaces. We apply our framework to a linear Fokker–Planck equation, but we believe the approach is robust enough to be applicable in a broader context.
where $\mathbb{B}^N$ is the disc model of the Hyperbolic space and $\Delta_{\mathbb{B}^N}$ denotes the Laplace–Beltrami operator with $N \geq 2$, $V:\mathbb{B}^N \to \mathbb{R}$ and $f:\mathbb{R} \to \mathbb{R}$ are continuous functions that satisfy some technical conditions. With different types of the potential V, by introducing some new tricks handling the hurdle that the Hyperbolic space is not a compact manifold, we are able to obtain at least a positive ground state solution using variational methods.
As some applications for the methods adopted above, we derive the existence of normalized solutions to the elliptic problems
where a > 0, $\mu\in \mathbb{R}$ is an unknown parameter that appears as a Lagrange multiplier and f is a continuous function that fulfils the L2-subcritical or L2-supercritical growth. We do believe that it seems the first results to deal with normalized solutions for the Schrödinger equations in the Hyperbolic space.
We investigate radial and non-radial solutions to a class of (p, q)-Laplace equations involving weights. More precisely, we obtain existence and multiplicity results for nontrivial nonnegative radial and non-radial solutions, which extend results in the literature. Moreover, we study the non-radiality of minimizers in Hénon type (p, q)-Laplace problems and symmetry-breaking phenomena.
Dedicated to Professor Pavel Drábek on the occasion of his seventieth birthday
where $\nabla\times$ denotes the usual curl operator in $\mathbb{R}^3$, $\mu_1,\mu_2 \gt 0$, and $\beta\in\mathbb{R}\backslash\{0\}$. We show that this critical system admits a non-trivial ground state solution when the parameter β is positive and small. For general $\beta\in\mathbb{R}\backslash\{0\}$, we prove that this system admits a non-trivial cylindrically symmetric solution with the least positive energy. We also study the existence of the curl-free solution and the synchronized solution due to the special structure of this system. These seem to be the first results on the critically coupled system containing the curl-curl operator.
We consider the two-dimensional nonlinear Schrödinger equation with point interaction and we establish a local well-posedness theory, including blow-up alternative and continuous dependence on the initial data in the energy space. We provide proof by employing Kato’s method along with Hardy inequalities with logarithmic correction. Moreover, we establish finite time blow-up for solutions with positive energy and infinite variance.
We establish that if α > 1 and $n\geq3$ or if $\alpha\in (1-\epsilon_0, 1)$ with $n=2m\geq4$, then $v_{\alpha}\equiv0$. As an application, we present a new proof of the classical Beckner inequality.
We study the timelike asymptotics for global solutions to a scalar quasilinear wave equation satisfying the weak null condition. Given a global solution u to the scalar wave equation with sufficiently small $C_c^\infty $ initial data, we derive an asymptotic formula for this global solution inside the light cone (i.e. for $|x|<t$). It involves the scattering data obtained in the author’s asymptotic completeness result in [75]. Using this asymptotic formula, we prove that u must vanish under some decaying assumptions on u or its scattering data, provided that the wave equation violates the null condition.
In this article, we investigate a free boundary problem for the Lotka–Volterra model consisting of an invasive species with density u and a native species with density v in one dimension. We assume that v undergoes diffusion and growth in $[0,+\infty )$, and u invades into the environment with spreading front $x=h(t)$ satisfying free boundary condition $h'(t)=-u_x(t,h(t))-\alpha $ for some decay rate $\alpha>0$, this is caused by the bad environment at the boundary. When u is an inferior competitor, $u(t,x)$ and $h(t)$ tend to 0 within a finite time, while another specie $v(t,x)$ tends to a stationary $\Lambda (x)$ defined on the half-line. When u is a superior competitor, we have a trichotomy result: spreading of u and vanishing of v (i.e., as $t \to +\infty $, $h(t)$ goes to $+\infty $ and $(u,v)\to (\Lambda ,0)$); the transition case (i.e., as $t \to +\infty $, $(u,v)\to (w_\alpha , \eta _\alpha )$, $h(t)$ tends to a finite point); vanishing of u and spreading of v (i.e., $u(t,x)$ and $h(t)$ tends to 0 within a finite time, $v(t,x)$ converges to $\Lambda (x)$). Additionally, we show that this trichotomy result depends on the initial data $u(0,x)$.
The Bray–Liebhafsky reaction is one of many intricate chemical systems that is known to exhibit periodic behaviour. Although the underlying chemistry is somewhat complicated and involves at least ten chemical species, in a recent work we suggested a reduced two-component model of the reaction involving the concentrations of iodine and iodous acid. Although it is drastically simplified, this reduced system retains enough structure so as to exhibit many of the oscillatory characteristics seen in experimental analyses. Here, we consider the possibility of spatial patterning in a nonuniformly mixed solution. Since many practical demonstrations of chemical oscillations are undertaken using circular containers such as beakers or Petri dishes, we develop both linearized and nonlinear pattern solutions in terms of cylindrical coordinates. These results are complemented by an analysis of the patterning that might be possible within a rectangular domain. The simulations give compelling evidence that spatial patterning may well be feasible in the Bray–Liebhafsky process.
under the homogeneous Neumann boundary condition for u, vi and the homogeneous Dirichlet boundary condition for $\bf{w}$ in a smooth bounded domain $\Omega \subset {\mathbb{R}^n}\left( {n \geqslant 1} \right),$ where ρ > 0, µ > 0, α > 1 and $i=1,\ldots,k$. We reveal that when the index α, the spatial variable n, and the number of equations k satisfy certain relationships, the global solution of the system exists and converges to the constant equilibrium state in the form of exponential convergence.
In the second part of this series of papers, we address the same evolution problem that was considered in part 1 (see [16]), namely the nonlocal Fisher-KPP equation in one spatial dimension,
\begin{equation*} u_t = D u_{xx} + u(1-\phi *u), \end{equation*}
where $\phi *u$ is a spatial convolution with the top hat kernel, $\phi (y) \equiv H\left (\frac {1}{4}-y^2\right )$, except that now we modify this to an associated initial-boundary value problem on the finite spatial interval $[0,a]$ rather than the whole real line. Boundary conditions are required at the end points of the interval, and we address the situations when these are of either Dirichlet or Neumann type. This model is a natural extension of the classical Fisher-KPP model, with the introduction of the simplest possible nonlocal effect into the saturation term. Nonlocal reaction-diffusion models arise naturally in a variety of (frequently biological or ecological) contexts, and as such it is of fundamental interest to examine their properties in detail, and to compare and contrast these with the well known properties of the classical Fisher-KPP model.
In this article, we address the following question: Which hyperbolic or elliptic PDEs admit functional separable solutions. We shall focus on the study of a sinh-Gordon type equation. We construct solutions to this equation via the method of functional separation. We prove that these are the only families that have the property of functional separation and so we obtain a classification. To this end, we construct new families of solutions for the hyperbolic and elliptic versions of both sine and sinh-Gordon equations in a unified way.
For multi-scale differential equations (or fast–slow equations), one often encounters problems in which a key system parameter slowly passes through a bifurcation. In this article, we show that a pair of prototypical reaction–diffusion equations in two space dimensions can exhibit delayed Hopf bifurcations. Solutions that approach attracting/stable states before the instantaneous Hopf point stay near these states for long, spatially dependent times after these states have become repelling/unstable. We use the complex Ginzburg–Landau equation and the Brusselator models as prototypes. We show that there exist two-dimensional spatio-temporal buffer surfaces and memory surfaces in the three-dimensional space-time. We derive asymptotic formulas for them for the complex Ginzburg–Landau equation and show numerically that they exist also for the Brusselator model. At each point in the domain, these surfaces determine how long the delay in the loss of stability lasts, that is, to leading order when the spatially dependent onset of the post-Hopf oscillations occurs. Also, the onset of the oscillations in these partial differential equations is a hard onset.