Hostname: page-component-76c49bb84f-l6pkv Total loading time: 0 Render date: 2025-07-10T00:53:58.780Z Has data issue: false hasContentIssue false

Global boundedness and stabilization of solutions for a chemotaxis system with acceleration and logistic source

Published online by Cambridge University Press:  04 July 2025

Wenbin Lyu*
Affiliation:
School of Mathematics and Statistics, Shanxi University, Taiyuan PR, China (lvwenbin@sxu.edu.cn) (corresponding author)
Jinling Jiang
Affiliation:
School of Mathematics and Statistics, Shanxi University, Taiyuan PR, China (jiangjinlingcn@163.com)
*
*Corresponding author.

Abstract

This article is concerned with the following chemotaxis-growth system

\begin{equation*}\begin{cases}u_t = \nabla\cdot \left(\nabla u - u\bf{w} \right) + \rho u - \mu u^\alpha ,&x \in \Omega ,\ t \gt 0,\\v_{1,t} = \Delta v_1 - v_1 + u,&x \in \Omega ,\ t \gt 0,\\v_{2,t} = \Delta v_2 - v_2 + v_1,&x \in \Omega ,\ t \gt 0,\\\ldots \\v_{k,t} = \Delta v_k - v_k + v_{k - 1},&x \in \Omega ,\ t \gt 0,\\{\bf{w}}_t = \Delta {\bf{w}} - {\bf{w}} + \nabla v_k,&x \in \Omega ,\ t \gt 0,\end{cases}\end{equation*}

under the homogeneous Neumann boundary condition for u, vi and the homogeneous Dirichlet boundary condition for $\bf{w}$ in a smooth bounded domain $\Omega \subset {\mathbb{R}^n}\left( {n \geqslant 1} \right),$ where ρ > 0, µ > 0, α > 1 and $i=1,\ldots,k$. We reveal that when the index α, the spatial variable n, and the number of equations k satisfy certain relationships, the global solution of the system exists and converges to the constant equilibrium state in the form of exponential convergence.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arditi, R., Tyutyunov, Y., Morgulis, A., Govorukhin, V. and Senina, I.. Directed movement of predators and the emergence of density-dependence in predator–prey models - ScienceDirect. Theor. Popul. Biol. 59 (2001), 207221.10.1006/tpbi.2001.1513CrossRefGoogle Scholar
Bai, X. L. and Winkler, M.. Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65 (2016), 553583.Google Scholar
Bellomo, N., Bellouquid, A., Tao, Y. S. and Winkler, M.. Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25 (2015), 16631763.10.1142/S021820251550044XCrossRefGoogle Scholar
Cao, X. R.. Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity. Discrete Contin. Dyn. Syst. Ser. B 22 (2017), 33693378.Google Scholar
Hillen, T. and Painter, K. J.. A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58 (2009) 183217.10.1007/s00285-008-0201-3CrossRefGoogle ScholarPubMed
Horstmann, D.. From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein. 105 (2003), 103165.Google Scholar
Horstmann, D. and Winkler, M.. Boundedness vs. blow-up in a chemotaxis system. J. Differential Equations 215 (2005), 52107.10.1016/j.jde.2004.10.022CrossRefGoogle Scholar
Ishida, S., Seki, K. and Yokota, T.. Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differential Equations 256 (2014), 29933010.10.1016/j.jde.2014.01.028CrossRefGoogle Scholar
Keller, E. F. and Segel, L. A.. Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26 (1970), 399415.10.1016/0022-5193(70)90092-5CrossRefGoogle Scholar
Keller, E. F. and Segel, L. A.. Model for chemotaxis. J. Theoret. Biol. 30 (1971), 225234.10.1016/0022-5193(71)90050-6CrossRefGoogle ScholarPubMed
Lankeit, J.. Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. J. Differential Equations 258 (2015), 11581191.10.1016/j.jde.2014.10.016CrossRefGoogle Scholar
Lankeit, J. and Winkler, M.. Depleting the signal: Analysis of chemotaxis-consumption models—A survey. Stud. Appl. Math. 151 (2023), 11971229.10.1111/sapm.12625CrossRefGoogle Scholar
Lieberman, G. M.. Second Order Parabolic Differential Equations (World Scientific Publishing Co. Inc., River Edge, NJ, 1996).10.1142/3302CrossRefGoogle Scholar
Lv, W. B. and Wang, Q.. A chemotaxis system with signal-dependent motility, indirect signal production and generalized logistic source: Global existence and asymptotic stabilization. J. Math. Anal. Appl. 488 (2020), 124108.10.1016/j.jmaa.2020.124108CrossRefGoogle Scholar
Lv, W. B. and Wang, Q. Y.. An n-dimensional chemotaxis system with signal-dependent motility and generalized logistic source: Global existence and asymptotic stabilization. Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), 821841.10.1017/prm.2020.38CrossRefGoogle Scholar
Lyu, W. B. and Hu, J.. The convergence rate of solutions in chemotaxis models with density-suppressed motility and logistic source. NoDEA Nonlinear Differential Equations Appl. 31 (2024), 77.10.1007/s00030-024-00958-zCrossRefGoogle Scholar
Lyu, W. B.. Weak solutions to a class of signal-dependent motility Keller-Segel systems with superlinear damping. J. Differential Equations 312 (2022), 209236.10.1016/j.jde.2021.12.020CrossRefGoogle Scholar
Lyu, W. B. and Mao, B.. The role of logistic damping in a class of chemotaxis systems with density-dependent motility and indirect signal absorption. Discrete Contin. Dyn. Syst. Ser. B 28 (2023), 51525176.10.3934/dcdsb.2022212CrossRefGoogle Scholar
Lyu, W. B. and Wang, J. H.. The convergence rate of solutions in a class of chemotaxis systems with density-dependent motility and indirect signal absorption. J. Math. Anal. Appl. 527 (2023), 127407, 8.10.1016/j.jmaa.2023.127407CrossRefGoogle Scholar
Lyu, W. B. and Wang, Z. A.. Logistic damping effect in chemotaxis models with density-suppressed motility. Adv. Nonlinear Anal. 12 (2023), 336355.10.1515/anona-2022-0263CrossRefGoogle Scholar
Mu, C. L. and Tao, W. R.. Stabilization and pattern formation in chemotaxis models with acceleration and logistic source. Math. Biosci. Eng. 20 (2023), 20112038.10.3934/mbe.2023093CrossRefGoogle ScholarPubMed
Mu, C. L., Tao, W. R. and Wang, Z. A.. Global dynamics and spatiotemporal heterogeneity of a preytaxis model with prey-induced acceleration. European J. Appl. Math. 35 (2024), 601633.10.1017/S0956792523000347CrossRefGoogle Scholar
Porzio, M. M. and Vespri, V.. Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Differential Equations 103 (1993), 146178.10.1006/jdeq.1993.1045CrossRefGoogle Scholar
Sapoukhina, N., Tyutyunov, Y. and Arditi, R.. The role of prey taxis in biological control: A spatial theoretical model. Amer. Nat. 162 (2003), 6176.10.1086/375297CrossRefGoogle ScholarPubMed
Suzuki, T.. Free Energy and Self-Interacting Particles, Volume 62 of Progress in Nonlinear Differential Equations and Their Applications (Birkhäuser Boston, Inc., Boston, MA, 2005).Google Scholar
Suzuki, T.. Chemotaxis, Reaction, Network (World Scientific Publishing Co. Pte. Ltd, Hackensack, NJ, 2018).10.1142/10926CrossRefGoogle Scholar
Tao, W. R. and Wang, Z. A.. On a new type of chemotaxis model with acceleration. Commun. Math. Anal. Appl. 1 (2022), 319344.Google Scholar
Tao, Y. S. and Winkler, M.. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differential Equations 252 (2012), 692715.10.1016/j.jde.2011.08.019CrossRefGoogle Scholar
Tello, J. I. and Winkler, M.. A chemotaxis system with logistic source. Comm. Partial Differential Equations 32 (2007), 849877.10.1080/03605300701319003CrossRefGoogle Scholar
Viglialoro, G.. Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source. J. Math. Anal. Appl. 439 (2016), 197212.10.1016/j.jmaa.2016.02.069CrossRefGoogle Scholar
Winkler, M.. Chemotaxis with logistic source: Very weak global solutions and their boundedness properties. J. Math. Anal. Appl. 348 (2008), 708729.10.1016/j.jmaa.2008.07.071CrossRefGoogle Scholar
Winkler, M.. Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differential Equations 248 (2010), 28892905.10.1016/j.jde.2010.02.008CrossRefGoogle Scholar
Winkler, M.. Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Comm. Partial Differential Equations 35 (2010), 15161537.10.1080/03605300903473426CrossRefGoogle Scholar
Winkler, M.. Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening. J. Differential Equations 257 (2014), 10561077.10.1016/j.jde.2014.04.023CrossRefGoogle Scholar
Winkler, M.. How far can chemotactic cross-diffusion enforce exceeding carrying capacities? J. Nonlinear Sci. 24 (2014), 809855.10.1007/s00332-014-9205-xCrossRefGoogle Scholar
Winkler, M.. Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems. Discrete Contin. Dyn. Syst. Ser. B 22 (2017), 27772793.Google Scholar
Winkler, M.. Attractiveness of constant states in logistic-type Keller-Segel systems involving subquadratic growth restrictions. Adv. Nonlinear Stud. 20 (2020), 795817.10.1515/ans-2020-2107CrossRefGoogle Scholar
Winkler, M.. The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in L 1. Adv. Nonlinear Anal. 9 (2020), 526566.10.1515/anona-2020-0013CrossRefGoogle Scholar
Winkler, M.. L 1 solutions to parabolic Keller-Segel systems involving arbitrary superlinear degradation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 24 (2023), 141172.Google Scholar
Xiang, T.. Sub-logistic source can prevent blow-up in the 2D minimal Keller-Segel chemotaxis system. J. Math. Phys. 59 (2018), 081502.10.1063/1.5018861CrossRefGoogle Scholar
Yan, J. L. and Fuest, M.. When do Keller-Segel systems with heterogeneous logistic sources admit generalized solutions? Discrete Contin. Dyn. Syst. Ser. B 26 (2021), 40934109.Google Scholar