Hostname: page-component-5447f9dfdb-lxwkt Total loading time: 0 Render date: 2025-07-28T07:55:21.090Z Has data issue: false hasContentIssue false

On the existence of positive solutions to some classes of elliptic problems in Hyperbolic space

Published online by Cambridge University Press:  28 July 2025

Claudianor O. Alves
Affiliation:
Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, 58429-970, Campina Grande-PB, Brazil (coalves@mat.ufcg.edu.br)
Liejun Shen*
Affiliation:
Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People’s Republic of China (ljshen@zjnu.edu.cn) (corresponding author)
*
*Corresponding author.

Abstract

We focus on the existence of ground state solutions to the following class of elliptic equations

\begin{equation*}-\Delta_{\mathbb{B}^N} u+V(x)u=f(u) \quad \hbox{in} \quad \mathbb{B}^N,\end{equation*}

where $\mathbb{B}^N$ is the disc model of the Hyperbolic space and $\Delta_{\mathbb{B}^N}$ denotes the Laplace–Beltrami operator with $N \geq 2$, $V:\mathbb{B}^N \to \mathbb{R}$ and $f:\mathbb{R} \to \mathbb{R}$ are continuous functions that satisfy some technical conditions. With different types of the potential V, by introducing some new tricks handling the hurdle that the Hyperbolic space is not a compact manifold, we are able to obtain at least a positive ground state solution using variational methods.

As some applications for the methods adopted above, we derive the existence of normalized solutions to the elliptic problems

\begin{equation*}\left\{\begin{aligned}&-\Delta_{\mathbb{B}^N} u+V(x)u=\mu u+f(u) \quad \hbox{in} \quad \mathbb{B}^N,\\&\int_{\mathbb{B}^N}|u|^{2}\,dV_{{\mathbb{B}^N}}=a^{2},\end{aligned}\right.\end{equation*}

where a > 0, $\mu\in \mathbb{R}$ is an unknown parameter that appears as a Lagrange multiplier and f is a continuous function that fulfils the L2-subcritical or L2-supercritical growth. We do believe that it seems the first results to deal with normalized solutions for the Schrödinger equations in the Hyperbolic space.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adachi, S. and Tanaka, K.. Existence of positive solutions for a class of nonhomogeneous elliptic equations in $\mathbb{R}^N$. Nonlinear Anal. 48 (2002), 685705.10.1016/S0362-546X(00)00206-6CrossRefGoogle Scholar
Alves, C. O. and de Holanda, A. R. F.. A Berestycki-Lions type result for a class of degenerate elliptic problems involving the Grushin operator. Proc. Roy. Soc. Edinburgh Sect. A. 153 (2023), 12441271.10.1017/prm.2022.43CrossRefGoogle Scholar
Alves, C. O. and Figueiredo, G. M.. Multiplicity of positive solutions for a quasilinear problem in $\mathbb{R}^N$ via penalization method. Adv. Nonlinear Stud. 5 (2005), 551572.10.1515/ans-2005-0405CrossRefGoogle Scholar
Alves, C. O. and Ji, C.. Normalized solutions for the Schrödinger equations with L 2-subcritical growth and different type of potentials. J. Geom. Anal. 32 (2022), 165.10.1007/s12220-022-00908-0CrossRefGoogle Scholar
Alves, C. O. and Shen, L.. On existence of solutions for some classes of elliptic problems with supercritical exponential growth. Math. Z. 306 (2024), 29.10.1007/s00209-023-03420-5CrossRefGoogle Scholar
Alves, C. O. and Shen, L.. On existence of normalized solutions to some classes of elliptic problems with L 2-supercritical growth. J. Differential Equations. 430 (2025), 43.10.1016/j.jde.2025.02.059CrossRefGoogle Scholar
Alves, C. O. and Thin, N. V.. On existence of multiple normalized solutions to a class of elliptic problems in whole $\mathbb{R}^N$ via Lusternik-Schnirelmann category. SIAM J. Math. Anal. 55 (2023), 12641283.Google Scholar
Ambrosetti, A., Badiale, M. and Cingolani, S.. Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140 (1997), 285300.10.1007/s002050050067CrossRefGoogle Scholar
Ambrosetti, A. and Malchiodi, A.. Concentration phenomena for nonlinear Schrödinger equations: recent results and new perspectives. Perspectives in Nonlinear Partial Differential Equations (Contemp. Math.), (Eds. Berestycki, H., Bertsch, M., Browder, F. E., Nirenberg, L., Peletier, L. A. Véron, L.), Vol.446, (Amer. Math. Soc., Providence, RI, 2007).Google Scholar
Bahri, A. and Berestycki, H.. A perturbation method in critical point theory and applications. Trans. Am. Math. Soc. 267 (1981), 132.10.1090/S0002-9947-1981-0621969-9CrossRefGoogle Scholar
Bahri, A. and Li, Y. Y.. On a min-max procedure for the existence of a positive solution for certain scalar field equations in $\mathbb{R}^N$. Rev. Mat. Iberoamericana. 6 (1990), 115.10.4171/rmi/92CrossRefGoogle Scholar
Bahri, A. and Lions, P.-L.. On the existence of a positive solution of semilinear elliptic equations in unbounded domains. Ann. Inst. H. Poincaré Anal. Non Linéaire. 14 (1997), 365413.10.1016/s0294-1449(97)80142-4CrossRefGoogle Scholar
Bartsch, T., Molle, R., Rizzi, M. and Verzini, G.. Normalized solutions of mass supercritical Schrödinger equations with potential. Comm. Partial Differential Equations. 46 (2021), 17291756.10.1080/03605302.2021.1893747CrossRefGoogle Scholar
Beckner, W.. On the Grushin operator and hyperbolic symmetry. Proc. Amer. Math. Soc. 129 (2001), 12331246 no.10.1090/S0002-9939-00-05630-6CrossRefGoogle Scholar
Benci, V. and Fortunato, D.. Variational Methods in Nonlinear Field Equations. Solitary Waves, Hylomorphic Solitons and Vortices (Springer Monographs in Mathematics). , (Springer, Cham, 2014).Google Scholar
Berestycki, H. and Lions, P.-L.. Nonlinear scalar field equations I. Existence of a ground state. Arch. Rational Mech. Anal. 82 (1983), 313345.10.1007/BF00250555CrossRefGoogle Scholar
Berestycki, H. and Lions, P.-L.. Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Rational Mech. Anal. 82 (1983), 347375.10.1007/BF00250556CrossRefGoogle Scholar
Bhakta, M. and Sandeep, K.. Poincaré-Sobolev equations in the hyperbolic space. Calc. Var. Partial Differential Equations. 44 (2012), 247269 no.10.1007/s00526-011-0433-8CrossRefGoogle Scholar
Bonforte, M., Gazzola, F., Grillo, G. and Vázquez, J. L.. Classification of radial solutions to the Emden-Fowler equation on the hyperbolic space. Calc. Var. Partial Differential Equations. 46 (2013), 375401.10.1007/s00526-011-0486-8CrossRefGoogle Scholar
Carrião, P. C., Faria, L. F. O. and Miyagaki, O. H.. Semilinear elliptic equations of the Hénon-type in hyperbolic space. Commun. Contemp. Math. 18 (2016), 1550026.10.1142/S0219199715500261CrossRefGoogle Scholar
Carrião, P. C., Lehrer, R., Miyagaki, O. H. and Vicente, A.. A Brézis-Niremberg problem on Hyperbolic spaces. Electron. J. Differential Equations. 2019 (2019), 115.Google Scholar
Carrião, P. C., Costa, A. C. R. and Miyagaki, O. H.. A class of critical Kirchhoff problem on the hyperbolic space $\mathbb{H}^N$. Glasg. Math. J. 62 (2020), 109122.10.1017/S0017089518000563CrossRefGoogle Scholar
Castorina, D., Fabbri, I, Mancini, G. and Sandeep, K.. Hardy-Sobolev inequalities and hyperbolic symmetry. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 19 (2008), 189197.Google Scholar
Castorina, D., Fabbri, I, Mancini, G. and Sandeep, K.. Hardy-Sobolev extremals, hyperbolic symmetry and scalar curvature equations. J. Differential Equations. 246 (2009), 11871206.10.1016/j.jde.2008.09.006CrossRefGoogle Scholar
Cazenave, T.. Semilinear SchröDinger Equations (Courant Lecture Notes in Mathematics). Vol.10, (Courant Institute of Mathematical Science/AMS, New York, 2003).Google Scholar
Cerami, G. and Passaseo, D.. Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains. Nonlinear Anal. 24 (1995), 15331547.10.1016/0362-546X(94)00116-YCrossRefGoogle Scholar
del Pino, M. and Felmer, P.. Multipeak bound states of nonlinear Schrödinger equations. Ann. Inst. Henri. Poincaré Anal. Non Linéaire. 15 (1998), 127149.10.1016/s0294-1449(97)89296-7CrossRefGoogle Scholar
del Pino, M. and Felmer, P.. Local Mountain Pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differential Equations. 4 (1996), 121137.10.1007/BF01189950CrossRefGoogle Scholar
Ding, Y. H. and Lin, F. H.. Solutions of perturbed Schrödinger equations with critical nonlinearity. Calc. Var. Partial Differential Equations. 30 (2007), 231249.10.1007/s00526-007-0091-zCrossRefGoogle Scholar
Ding, Y. H. and Liu, X. Y.. Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities. Manuscripta Math. 140 (2013), 5182.10.1007/s00229-011-0530-1CrossRefGoogle Scholar
Ding, Y. H. and Zhong, X. X.. Normalized solution to the Schrödinger equation with potential and general nonlinear term: Mass super-critical case. J. Differential Equations. 334 (2022), 194215.10.1016/j.jde.2022.06.013CrossRefGoogle Scholar
doÓ, J. M. and da Costa, R.. Symmetry properties for nonnegative solutions of non-uniformly elliptic equations in the hyperbolic space. J. Math. Anal. Appl. 435 (2016), 17531771.10.1016/j.jmaa.2015.11.031CrossRefGoogle Scholar
Floer, A. and Weinstein, A.. Nonspreading wave pachets for the packets for the cubic Schrödinger with a bounded potential. J. Funct. Anal. 69 (1986), 397408.10.1016/0022-1236(86)90096-0CrossRefGoogle Scholar
Ganguly, D. and Karmakar, D.. Existence results for semilinear problems in the two-dimensional hyperbolic space involving critical growth. Proc. Roy. Soc. Edinburgh Sect. A. 147 (2017), 141176.10.1017/S0308210516000068CrossRefGoogle Scholar
Ganguly, D., Gupta, D. and Sreenadh, K.. Existence of high energy-positive solutions for a class of elliptic equations in the hyperbolic space. J. Geom. Anal. 33 (2023), 79.10.1007/s12220-022-01128-2CrossRefGoogle Scholar
Ganguly, D. and Sandeep, K.. Sign changing solutions of the Brézis-Nirenberg problem in the hyperbolic space. Calc. Var. Partial Differential Equations. 50 (2014), 6991 no.10.1007/s00526-013-0628-2CrossRefGoogle Scholar
Ganguly, D. and Sandeep, K.. Nondegeneracy of positive solutions of semilinear elliptic problems in the hyperbolic space. Commun. Contemp. Math. 17 (2015), 1450019.10.1142/S0219199714500199CrossRefGoogle Scholar
Gilbarg, D. and Trudinger, N. S.. Elliptic Partial Differential Equations of Second Order (Classics in Mathematics). (Springer-Verlag, Berlin, 2001) Reprint of the 1998 ed..10.1007/978-3-642-61798-0CrossRefGoogle Scholar
Grillo, G. and Muratori, M.. Radial fast diffusion on the hyperbolic space. Proc. Lond. Math. Soc. (3). 109 (2014), 283317.10.1112/plms/pdt071CrossRefGoogle Scholar
Guo, Y. J. and Seiringer, R.. On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett. Math. Phys. 104 (2014), 141156.10.1007/s11005-013-0667-9CrossRefGoogle Scholar
Hasegawa, S.. Classification of radial solutions to Hénon type equation on the hyperbolic space. Topol. Methods Nonlinear Anal. 54 (2019), 81108.Google Scholar
He, H.. Supercritical elliptic equation in hyperbolic space. J. Partial Differ. Equ. 28 (2015), 120127.Google Scholar
Hebey, E.. Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities (Notes in Mathematics). Vol.1635, (Springer, 1996).Google Scholar
Ho, P.. The Webster scalar curvature flow on CR sphere, Part I. Adv. Math. 268 (2015), 758835.10.1016/j.aim.2014.10.005CrossRefGoogle Scholar
Ho, P.. The Webster scalar curvature flow on CR sphere, Part II. Adv. Math. 268 (2015), 836905.10.1016/j.aim.2014.10.008CrossRefGoogle Scholar
Jeanjean, L.. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28 (1997), 16331659.10.1016/S0362-546X(96)00021-1CrossRefGoogle Scholar
Jeanjean, L. and Tanaka, K.. Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. Partial Differential Equations. 21 (2004), 287318.10.1007/s00526-003-0261-6CrossRefGoogle Scholar
Karmakar, D. and Sandeep, K.. Adams inequality on the hyperbolic space. J. Funct. Anal. 270 (2016), 17921817.10.1016/j.jfa.2015.11.019CrossRefGoogle Scholar
Lieb, E. H., Seiringer, R. and Yngvason, J.. Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A. 61 (2000), 43602.10.1103/PhysRevA.61.043602CrossRefGoogle Scholar
Lions, P.-L.. The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire. 1 (1984), 109145.10.1016/s0294-1449(16)30428-0CrossRefGoogle Scholar
Lions, P.-L.. The concentration-compactness principle in the calculus of variations: The locally compact case II. Ann. Inst. H. Poincaré Anal. Non Linéaire. 4 (1984), 223283.10.1016/s0294-1449(16)30422-xCrossRefGoogle Scholar
Malchiodi, A.. Multiple positive solutions of some elliptic equations in $\mathbb{R}^N$. Nonlinear Anal. 43 (2001), 159172.10.1016/S0362-546X(99)00186-8CrossRefGoogle Scholar
Mancini, G. and Sandeep, K.. On a semilinear elliptic equation in $\mathbb{H}^n$. Ann. Sc. Norm. Super. Pisa Cl. Sci. 7 (2008), 635671.Google Scholar
Molle, R., Riey, G. and Verzini, G.. Normalized solutions to mass supercritical Schrödinger equations with negative potential. J. Differential Equations. 333 (2022), 302331.10.1016/j.jde.2022.06.012CrossRefGoogle Scholar
Musso, M. and Pimentel, J.. A semilinear elliptic equation with competing powers and a radial potential. J. Anal. Math. 140 (2020), 283298.10.1007/s11854-020-0089-4CrossRefGoogle Scholar
Noris, B., Tavares, H. and Verzini, G.. Existence and orbital stability of the ground states with prescribed mass for the L 2-critical and supercritical NLS on bounded domains. Anal. PDE. 7 (2014), 18071838.10.2140/apde.2014.7.1807CrossRefGoogle Scholar
Noris, B., Tavares, H. and Verzini, G.. Normalized solutions for nonlinear Schrödinger systems on bounded domains. Nonlinearity. 32 (2019), 10441072.10.1088/1361-6544/aaf2e0CrossRefGoogle Scholar
Pierotti, D. and Verzini, G.. Normalized bound states for the nonlinear Schrödinger equation in bounded domains. Calc. Var. Partial Differential Equations. 56 (2017), 27.10.1007/s00526-017-1232-7CrossRefGoogle Scholar
Rabinowitz, P.. On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43 (1992), 270291.10.1007/BF00946631CrossRefGoogle Scholar
Ratcliffe, J. G.. Foundations of Hyperbolic Manifolds (Graduate Texts in Mathematics). Vol. 149, (Springer, New York, 1994).10.1007/978-1-4757-4013-4CrossRefGoogle Scholar
Salem, E. and Gamara, N.. The Webster scalar curvature revisited: the case of the three dimensional CR sphere. Calc. Var. Partial Differential Equations. 42 (2011), 107136.10.1007/s00526-010-0382-7CrossRefGoogle Scholar
Seiringer, R.. Hot topics in cold gases. XVIth International Congress on Mathematical Physics, (World Scientific Publishing, Hackensack, NJ, 2010).Google Scholar
Selvitella, A.. Qualitative properties of stationary solutions of the NLS on the hyperbolic space without and with external potentials. Commun. Pure Appl. Anal. 18 (2019), 26632677.10.3934/cpaa.2019118CrossRefGoogle Scholar
Soave, N.. Normalized ground states for the NLS equation with combined nonlinearities. J. Differential Equations. 269 (2020), 69416987.10.1016/j.jde.2020.05.016CrossRefGoogle Scholar
Soave, N.. Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279 (2020), 43.10.1016/j.jfa.2020.108610CrossRefGoogle Scholar
Szulkin, A. and Weth, T.. Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257 (2009), 38023822.10.1016/j.jfa.2009.09.013CrossRefGoogle Scholar
Szulkin, A. and Weth, T.. The method of Nehari manifold. Handbook of Nonconvex Analysis and Applications, (International Press, Somerville, MA, 2010).Google Scholar
Wang, X.. On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 53 (1993), 229244.10.1007/BF02096642CrossRefGoogle Scholar
Willem, M.. Minimax Theorems. (Birkhauser, Basel, Switzerland, 1996).10.1007/978-1-4612-4146-1CrossRefGoogle Scholar