Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-vcb8f Total loading time: 0.28 Render date: 2022-09-27T05:36:30.493Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

On further classes of martingale-like sequences and some decomposition and convergence theorems

Published online by Cambridge University Press:  01 October 1999

Dinh Quang Luu
Affiliation:
Hanoi Institute of Mathematics, P.O. Box 631 Bo-Ho, Hanoi, Vietnam Actual address: IM - Stefan Banach Center, ul. Mokotowska 25, skr. 137, 00-950 Warsaw, Poland
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is known that the class of mils generalizes that of pramarts and martingales in the limit. Also every Banach space-valued mil (Xn) with lim infnE(‖Xn‖)<∞ can be written in a unique form: $X_n=M_n+P_n(n\in\rm{N})$, where $(M_n)$ is a uniformly integrable martingale and $(P_n)$ converges to zero a.s. in norm. We shall show that this result still holds for a class which essentially generalizes that of mils. Another class of Banach space-valued martingale-like sequences, still containing all pramarts is defined and shown to have the decomposition above under the following much weaker condition: $\rm{lim inf}_{r\inT}E(\VertX_{\tau}\Vert)<\infty$, where T denotes the set of all bounded stopping times.

1991 Mathematics Subject Classification. 60G48, 60B11.

Type
Research Article
Copyright
1999 Glasgow Mathematical Journal Trust
You have Access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On further classes of martingale-like sequences and some decomposition and convergence theorems
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

On further classes of martingale-like sequences and some decomposition and convergence theorems
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

On further classes of martingale-like sequences and some decomposition and convergence theorems
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *