Skip to main content
×
Home

Epidemiological Model for Clostridium difficile Transmission in Healthcare Settings

  • C. Lanzas (a1) (a2), E. R. Dubberke (a3), Z. Lu (a1), K. A. Reske (a3) and Y. T. Gröhn (a1)...
Abstract
Objective.

Recent outbreaks of Clostridium difficile infection (CDI) have been difficult to control, and data indicate that the importance of different sources of transmission may have changed. Our objectives were to evaluate the contributions of asymptomatic and symptomatic C. difficile carriers to new colonizations and to determine the most important epidemiological factors influencing C. difficile transmission.

Design, Setting, and Patients.

Retrospective cohort study of all patients admitted to medical wards at a large tertiary care hospital in the United States in the calendar year 2008.

Methods.

Data from six medical wards and published literature were used to develop a compartmental model of C. difficile transmission. Patients could be in one of five transition states in the model: resistant to colonization (R), susceptible to colonization (S), asymptomatically colonized without protection against CDI (C-), asymptomatically colonized with protection against CDI (C+), and diseased (ie, with CDI; D).

Results.

The contributions of C-, C+, and D patients to new colonizations were similar. The simulated basic reproduction number ranged from 0.55 to 1.99, with a median of 1.04. These values suggest that transmission within the ward alone from patients with CDI cannot sustain new C. difficile colonizations and therefore that the admission of colonized patients plays an important role in sustaining transmission in the ward. The epidemiological parameters that ranked as the most influential were the proportion of admitted C- patients and the transmission coefficient for asymptomatic carriers.

Conclusion.

Our study underscores the need to further evaluate the role of asymptomatically colonized patients in C. difficile transmission in healthcare settings.

Copyright
References
Hide All
1.Miller BA, Chen LF, Sexton DJ, Anderson DJ. The impact of hospital-onset healthcare facility associated (HO-HCFA) Clostridium difficile infection (CDI) in community hospitals: surpassing methicillin-resistant Staphylococcus aureus (MRSA) as the new superbug. Paper presented at: 5th Decennial International Conference on Healthcare-Associated Infections, 18-22 March 2010; Atlanta, Georgia.
2.McDonald LC, Killgore GE, Thompson A, et al.An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 2005;353(23):24332441.
3.O'Brien JA, Lahue BJ, Caro JJ, Davidson DM. The emerging infectious challenge of Clostridium difficile-associated disease in Massachusetts hospitals: clinical and economic consequences. Infect Control Hosp Epidemiol 2007;28(11):12191227.
4.Dubberke ER, Butler AM, Reske KA, et al.Attributable outcomes of endemic Clostridium difficile-associated disease in nonsurgical patients. Emerg Infect Dis 2008;14(7):103l1038.
5.McDonald LC, Owings M, Jernigan DB. Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996-2003. Emerg Infect Dis 2006;12(3):409415.
6.Valiquette L, Cossette B, Garant MP, Diab H, Pépin J. Impact of a reduction in the use of high-risk antibiotics on the course of an epidemic of Clostridium difficile-associated disease caused by the hypervirulent NAP1/027 strain. Clin Infect Dis 2007;45(suppl 2):S112S121.
7.McFarland LV, Mulligan ME, Kwok RY, Stamm WE. Nosocomial acquisition of Clostridium difficile infection. N Engl J Med 1989;320(4):204210.
8.Samore MH, Venkataraman L, DeGirolami PC, Arbeit RD, Karchmer AW. Clinical and molecular epidemiology of sporadic and clustered cases of nosocomial Clostridium difficile diarrhea. Am J Med 1996;100(1):3240.
9.Clabots CR, Johnson S, Olson MM, Peterson LR, Gerding DN. Acquisition of Clostridium difficile by hospitalized patients: evidence for colonized new admissions as a source of infection. J Infect Dis 1992;166(3):561567.
10.Dubberke ER, Gerding DN, Classen D, et al.Strategies to prevent Clostridium difficile infections in acute care hospitals. Infect Control Hosp Epidemiol 2008;29(suppl 1):S81S92.
11.McFarland LV, Beneda HW, Clarridge JE, Raugi GJ. Implications of the changing face of Clostridium difficile disease for health care practitioners. Am J Infect Control 2007;35(4):237253.
12.Boyce JM, Pittet D. Guideline for hand hygiene in health-care settings: recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force (Society for Healthcare Epidemiology of America/Association for Professionals in Infection Control/Infectious Diseases Society of America). MMWR Morb Mortal Wkly Rep 2002;51(RR16):145, quiz CE4144.
13.Oughton MT, Loo VG, Dendukuri N, Fenn S, Libman MD. Hand hygiene with soap and water is superior to alcohol rub and antiseptic wipes for removal of Clostridium difficile. Infect Control Hosp Epidemiol 2009;30(10):939944.
14.Abbett SK, Yokoe DS, Lipsitz SR, et al.Proposed checklist of hospital interventions to decrease the incidence of healthcare-associated Clostridium difficile infection. Infect Control Hosp Epidemiol 2009;30(11):10621069.
15.Austin DJ, Bonten MJM, Weinstein RA, Slaughter S, Anderson RM. Vancomycin-resistant enterococci in intensive-care hospital settings: transmission dynamics, persistence, and the impact of infection control programs. Proc Natl Acad Sci USA 1999;96(12): 69086913.
16.D'Agata EMC, Webb G, Horn M. A mathematical model quantifying the impact of antibiotic exposure and other interventions ori the endemic prevalence of vancpmycin-resistant enterococci. J Infect Dis 2005;192(11):20042011.
17.Bootsma MCJ, Diekmann O, Bonten MJM. Controlling methi-cillin-resistant Staphylococcus aureus: quantifying the effects of interventions and rapid diagnostic testing. Proc Natl Acad Sci USA 2006;103(14):56205625.
18.Starr JM, Campbell A, Renshaw E, Poxton IR, Gibson GJ. Spatio-temporal stochastic modelling of Clostridium difficile. J Hosp Infect 2009;71(1):4956.
19.McCoubrey J, Starr J, Martin H, Poxton IR. Clostridium difficile in a geriatric unit: a prospective epidemiological study employing a novel S-layer typing method. J Med Microbiol 2003;52(7): 573578.
20.Johnson S, Gerding DN. Clostridium difficile-associated diarrhea. Clin Infect Dis 1998;26(5):10271034.
21.Johnson S, Homann SR, Bettin KM, et al.Treatment of asymptomatic Clostridium difficile carriers (fecal excretors) with vancomycin or metronidazole: a randomized, placebo-controlled trial. Ann Intern Med 1992;117(4):297302.
22.Rafii F, Sutherland JB, Cerniglia CE. Effects of treatment with antimicrobial agents on the human colonic rnicroflora. Ther Clin Risk Manag 2008;4(6):13431358.
23.Kyne L, Warny M, Qamar A, Kelly CP. Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against Toxin A. N Engl J Med 2000;342(6):390397.
24.McFarland LV. Update on the changing epidemiology of Clostridium difficile-associated disease. Nat Clin Pract Gastroenterol Hepatol 2008;5(1):4048.
25.Chang HT, Krezolek D, Johnson S, Parada JP, Evans CT, Gerding DN. Onset of symptoms and time to diagnosis of Clostridium difficile-associated disease following discharge from an acute care hospital. Infect Control Hosp Epidemiol 2007;28(8):926931.
26.Diekmann O, Heesterbeek JAP. Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Chichester: Wiley, 2000.
27.Sobol' IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 2001;55(1-3):271280.
28.Otten AM, Reid-Smith RJ, Fazil A, Weese JS. Disease transmission model for community-associated Clostridium difficile infection. Epidemiol Infect 2010;138(6):907914.
29.Kuijper EJ, Coignard B, Tüll P. Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect 2006;12(suppl s6):218.
30.Dubberke ER. The A, B, BI, and Cs of Clostridium difficile. Clin Infect Dis 2009;49(8):11481152.
31.Wilcox MH, Mooney L, Bendall R, Settle CD, Fawley WN. A case-control study of community-associated Clostridium difficile infection. J Antimicrob Chemother 2008;62(2):388396.
32.Weese JS. Clostridium difficile in food: innocent bystander or serious threat? Clin Microbiol Infect 2010;16(1):310.
33.Dubberke ER, McMullen KM, Mayfield JL, et al.Hospital-associated Clostridium difficile infection: is it necessary to track community-onset disease? Infect Control Hosp Epidemiol 2009;30(4):332337.
34.Kyne L, Sougioultzis S, McFarland LV, Kelly CP. Underlying disease severity as a major risk factor for nosocomial Clostridium difficile diarrhea. Infect Control Hosp Epidemiol 2002;23(11):653659.
35.Johnson S, Gerding DN, Olson MM, et al.Prospective, controlled study of vinyl glove use to interrupt Clostridium difficile nosocomial transmission. Am J Med 1990;88(2):137140.
36.Cohen SH, Gerding DN, Johnson S, et al.Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol 2010;31(5):431–55.
37.Litvin M, Reske KA, Mayfield J, et al.Identification of a pseudo-outbreak of Clostridium difficile infection (CDI) and the effect of repeated testing, sensitivity, and specificity on perceived prevalence of CDI. Infect Control Hosp Epidemiol 2009;30(12):11661171.
38.Dubberke ER. Prevention of healthcare-associated Clostridium difficile infection: what works? Infect Control Hosp Epidemiol 2010;31(suppl 1):S38S41.
39.Keeling MJ, Rohani P. Modeling infectious diseases in humans and animals. Princeton, NJ: Princeton University Press, 2008.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 232 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.